Luacháil
\frac{299}{567}\approx 0.527336861
Fachtóirigh
\frac{13 \cdot 23}{3 ^ {4} \cdot 7} = 0.527336860670194
Roinn
Cóipeáladh go dtí an ghearrthaisce
-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Suimigh \frac{1}{3} agus \frac{7}{9} chun \frac{10}{9} a fháil.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Ríomh cumhacht \frac{10}{9} de 2 agus faigh \frac{100}{81}.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Dealaigh \frac{1}{2} ó 1 chun \frac{1}{2} a fháil.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Ríomh cumhacht \frac{1}{2} de 2 agus faigh \frac{1}{4}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Ríomh cumhacht -2 de 3 agus faigh -8.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Méadaigh \frac{1}{4} agus -8 chun -2 a fháil.
-\frac{\frac{100}{81}}{-\frac{7}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Dealaigh \frac{3}{2} ó -2 chun -\frac{7}{2} a fháil.
-\frac{100}{81}\left(-\frac{2}{7}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Roinn \frac{100}{81} faoi -\frac{7}{2} trí \frac{100}{81} a mhéadú faoi dheilín -\frac{7}{2}.
-\left(-\frac{200}{567}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Méadaigh \frac{100}{81} agus -\frac{2}{7} chun -\frac{200}{567} a fháil.
\frac{200}{567}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Tá \frac{200}{567} urchomhairleach le -\frac{200}{567}.
\frac{200}{567}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Ríomh cumhacht -\frac{1}{6} de 2 agus faigh \frac{1}{36}.
\frac{737}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Dealaigh \frac{1}{36} ó \frac{200}{567} chun \frac{737}{2268} a fháil.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Dealaigh \frac{1}{5} ó \frac{1}{4} chun \frac{1}{20} a fháil.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Dealaigh \frac{2}{5} ó 1 chun \frac{3}{5} a fháil.
\frac{737}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Ríomh cumhacht \frac{3}{5} de 2 agus faigh \frac{9}{25}.
\frac{737}{2268}+\frac{1}{20}\times \frac{25}{9}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Roinn \frac{1}{20} faoi \frac{9}{25} trí \frac{1}{20} a mhéadú faoi dheilín \frac{9}{25}.
\frac{737}{2268}+\frac{5}{36}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Méadaigh \frac{1}{20} agus \frac{25}{9} chun \frac{5}{36} a fháil.
\frac{263}{567}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Suimigh \frac{737}{2268} agus \frac{5}{36} chun \frac{263}{567} a fháil.
\frac{263}{567}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
Dealaigh \frac{2}{9} ó \frac{1}{3} chun \frac{1}{9} a fháil.
\frac{263}{567}-\frac{\frac{1}{9}}{-\frac{7}{4}}
Dealaigh \frac{15}{8} ó \frac{1}{8} chun -\frac{7}{4} a fháil.
\frac{263}{567}-\frac{1}{9}\left(-\frac{4}{7}\right)
Roinn \frac{1}{9} faoi -\frac{7}{4} trí \frac{1}{9} a mhéadú faoi dheilín -\frac{7}{4}.
\frac{263}{567}-\left(-\frac{4}{63}\right)
Méadaigh \frac{1}{9} agus -\frac{4}{7} chun -\frac{4}{63} a fháil.
\frac{263}{567}+\frac{4}{63}
Tá \frac{4}{63} urchomhairleach le -\frac{4}{63}.
\frac{299}{567}
Suimigh \frac{263}{567} agus \frac{4}{63} chun \frac{299}{567} a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}