Réitigh do E. (complex solution)
\left\{\begin{matrix}E=U\text{, }&m\neq 0\\E\in \mathrm{C}\text{, }&\psi =0\text{ and }m\neq 0\end{matrix}\right.
Réitigh do U. (complex solution)
\left\{\begin{matrix}U=E\text{, }&m\neq 0\\U\in \mathrm{C}\text{, }&\psi =0\text{ and }m\neq 0\end{matrix}\right.
Réitigh do E.
\left\{\begin{matrix}E=U\text{, }&\psi \neq 0\text{ and }m\neq 0\\E\in \mathrm{R}\text{, }&\psi =0\text{ and }m\neq 0\end{matrix}\right.
Réitigh do U.
\left\{\begin{matrix}U=E\text{, }&\psi \neq 0\text{ and }m\neq 0\\U\in \mathrm{R}\text{, }&\psi =0\text{ and }m\neq 0\end{matrix}\right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Méadaigh an dá thaobh den chothromóid faoi 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Scríobh \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m mar chodán aonair.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cealaigh m mar uimhreoir agus ainmneoir.
E\psi \times 2m=-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
2m\psi E=2Um\psi
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{2m\psi E}{2m\psi }=\frac{2Um\psi }{2m\psi }
Roinn an dá thaobh faoi 2\psi m.
E=\frac{2Um\psi }{2m\psi }
Má roinntear é faoi 2\psi m cuirtear an iolrúchán faoi 2\psi m ar ceal.
E=U
Roinn 2U\psi m faoi 2\psi m.
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Méadaigh an dá thaobh den chothromóid faoi 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Scríobh \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m mar chodán aonair.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cealaigh m mar uimhreoir agus ainmneoir.
U\psi \times 2m=E\psi \times 2m+ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Cuir ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} leis an dá thaobh.
2m\psi U=2Em\psi
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{2m\psi U}{2m\psi }=\frac{2Em\psi }{2m\psi }
Roinn an dá thaobh faoi 2\psi m.
U=\frac{2Em\psi }{2m\psi }
Má roinntear é faoi 2\psi m cuirtear an iolrúchán faoi 2\psi m ar ceal.
U=E
Roinn 2E\psi m faoi 2\psi m.
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Méadaigh an dá thaobh den chothromóid faoi 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Scríobh \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m mar chodán aonair.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cealaigh m mar uimhreoir agus ainmneoir.
E\psi \times 2m=-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
2m\psi E=2Um\psi
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{2m\psi E}{2m\psi }=\frac{2Um\psi }{2m\psi }
Roinn an dá thaobh faoi 2\psi m.
E=\frac{2Um\psi }{2m\psi }
Má roinntear é faoi 2\psi m cuirtear an iolrúchán faoi 2\psi m ar ceal.
E=U
Roinn 2U\psi m faoi 2\psi m.
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Méadaigh an dá thaobh den chothromóid faoi 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Scríobh \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m mar chodán aonair.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cealaigh m mar uimhreoir agus ainmneoir.
U\psi \times 2m=E\psi \times 2m+ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Cuir ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} leis an dá thaobh.
2m\psi U=2Em\psi
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{2m\psi U}{2m\psi }=\frac{2Em\psi }{2m\psi }
Roinn an dá thaobh faoi 2\psi m.
U=\frac{2Em\psi }{2m\psi }
Má roinntear é faoi 2\psi m cuirtear an iolrúchán faoi 2\psi m ar ceal.
U=E
Roinn 2E\psi m faoi 2\psi m.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}