Scipeáil chuig an bpríomhábhar
Réitigh do E. (complex solution)
Tick mark Image
Réitigh do U. (complex solution)
Tick mark Image
Réitigh do E.
Tick mark Image
Réitigh do U.
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Méadaigh an dá thaobh den chothromóid faoi 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Scríobh \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m mar chodán aonair.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cealaigh m mar uimhreoir agus ainmneoir.
E\psi \times 2m=-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
2m\psi E=2Um\psi
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{2m\psi E}{2m\psi }=\frac{2Um\psi }{2m\psi }
Roinn an dá thaobh faoi 2\psi m.
E=\frac{2Um\psi }{2m\psi }
Má roinntear é faoi 2\psi m cuirtear an iolrúchán faoi 2\psi m ar ceal.
E=U
Roinn 2U\psi m faoi 2\psi m.
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Méadaigh an dá thaobh den chothromóid faoi 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Scríobh \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m mar chodán aonair.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cealaigh m mar uimhreoir agus ainmneoir.
U\psi \times 2m=E\psi \times 2m+ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Cuir ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} leis an dá thaobh.
2m\psi U=2Em\psi
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{2m\psi U}{2m\psi }=\frac{2Em\psi }{2m\psi }
Roinn an dá thaobh faoi 2\psi m.
U=\frac{2Em\psi }{2m\psi }
Má roinntear é faoi 2\psi m cuirtear an iolrúchán faoi 2\psi m ar ceal.
U=E
Roinn 2E\psi m faoi 2\psi m.
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Méadaigh an dá thaobh den chothromóid faoi 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Scríobh \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m mar chodán aonair.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cealaigh m mar uimhreoir agus ainmneoir.
E\psi \times 2m=-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
2m\psi E=2Um\psi
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{2m\psi E}{2m\psi }=\frac{2Um\psi }{2m\psi }
Roinn an dá thaobh faoi 2\psi m.
E=\frac{2Um\psi }{2m\psi }
Má roinntear é faoi 2\psi m cuirtear an iolrúchán faoi 2\psi m ar ceal.
E=U
Roinn 2U\psi m faoi 2\psi m.
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Méadaigh an dá thaobh den chothromóid faoi 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Scríobh \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 mar chodán aonair.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Scríobh \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m mar chodán aonair.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cealaigh m mar uimhreoir agus ainmneoir.
U\psi \times 2m=E\psi \times 2m+ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Cuir ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} leis an dá thaobh.
2m\psi U=2Em\psi
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{2m\psi U}{2m\psi }=\frac{2Em\psi }{2m\psi }
Roinn an dá thaobh faoi 2\psi m.
U=\frac{2Em\psi }{2m\psi }
Má roinntear é faoi 2\psi m cuirtear an iolrúchán faoi 2\psi m ar ceal.
U=E
Roinn 2E\psi m faoi 2\psi m.