Réitigh do x.
x=\frac{\sqrt{73}-7}{2}\approx 0.772001873
x=\frac{-\sqrt{73}-7}{2}\approx -7.772001873
x=3
x=-2
Graf
Tráth na gCeist
Polynomial
(x+6)(x+3)(x-1)(x-2)=12 { x }^{ 2 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(x^{2}+9x+18\right)\left(x-1\right)\left(x-2\right)=12x^{2}
Úsáid an t-airí dáileach chun x+6 a mhéadú faoi x+3 agus chun téarmaí comhchosúla a chumasc.
\left(x^{3}+8x^{2}+9x-18\right)\left(x-2\right)=12x^{2}
Úsáid an t-airí dáileach chun x^{2}+9x+18 a mhéadú faoi x-1 agus chun téarmaí comhchosúla a chumasc.
x^{4}+6x^{3}-7x^{2}-36x+36=12x^{2}
Úsáid an t-airí dáileach chun x^{3}+8x^{2}+9x-18 a mhéadú faoi x-2 agus chun téarmaí comhchosúla a chumasc.
x^{4}+6x^{3}-7x^{2}-36x+36-12x^{2}=0
Bain 12x^{2} ón dá thaobh.
x^{4}+6x^{3}-19x^{2}-36x+36=0
Comhcheangail -7x^{2} agus -12x^{2} chun -19x^{2} a fháil.
±36,±18,±12,±9,±6,±4,±3,±2,±1
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta 36 agus nuair a roinneann q an chomhéifeacht thosaigh 1. Liostaigh gach iarrthóir \frac{p}{q}.
x=-2
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{3}+4x^{2}-27x+18=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn x^{4}+6x^{3}-19x^{2}-36x+36 faoi x+2 chun x^{3}+4x^{2}-27x+18 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
±18,±9,±6,±3,±2,±1
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta 18 agus nuair a roinneann q an chomhéifeacht thosaigh 1. Liostaigh gach iarrthóir \frac{p}{q}.
x=3
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{2}+7x-6=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn x^{3}+4x^{2}-27x+18 faoi x-3 chun x^{2}+7x-6 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\left(-6\right)}}{2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir 1 in ionad a, 7 in ionad b agus -6 in ionad c san fhoirmle chearnach.
x=\frac{-7±\sqrt{73}}{2}
Déan áirimh.
x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
Réitigh an chothromóid x^{2}+7x-6=0 nuair is ionann ± agus luach deimhneach agus ± agus luach diúltach.
x=-2 x=3 x=\frac{-\sqrt{73}-7}{2} x=\frac{\sqrt{73}-7}{2}
Liostaigh na réitigh ar fad a aimsíodh.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}