Réitigh do x. (complex solution)
x=-\frac{1}{2}=-0.5
x=1
x=-\left(\sqrt{5}+1\right)\approx -3.236067977
x=\sqrt{5}-1\approx 1.236067977
Réitigh do x.
x=\sqrt{5}-1\approx 1.236067977
x=-\sqrt{5}-1\approx -3.236067977
x=1
x=-\frac{1}{2}=-0.5
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
±2,±4,±1,±\frac{1}{2}
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta 4 agus nuair a roinneann q an chomhéifeacht thosaigh 2. Liostaigh gach iarrthóir \frac{p}{q}.
x=1
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
2x^{3}+5x^{2}-6x-4=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn 2x^{4}+3x^{3}-11x^{2}+2x+4 faoi x-1 chun 2x^{3}+5x^{2}-6x-4 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
±2,±4,±1,±\frac{1}{2}
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta -4 agus nuair a roinneann q an chomhéifeacht thosaigh 2. Liostaigh gach iarrthóir \frac{p}{q}.
x=-\frac{1}{2}
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{2}+2x-4=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn 2x^{3}+5x^{2}-6x-4 faoi 2\left(x+\frac{1}{2}\right)=2x+1 chun x^{2}+2x-4 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
x=\frac{-2±\sqrt{2^{2}-4\times 1\left(-4\right)}}{2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir 1 in ionad a, 2 in ionad b agus -4 in ionad c san fhoirmle chearnach.
x=\frac{-2±2\sqrt{5}}{2}
Déan áirimh.
x=-\sqrt{5}-1 x=\sqrt{5}-1
Réitigh an chothromóid x^{2}+2x-4=0 nuair is ionann ± agus luach deimhneach agus ± agus luach diúltach.
x=1 x=-\frac{1}{2} x=-\sqrt{5}-1 x=\sqrt{5}-1
Liostaigh na réitigh ar fad a aimsíodh.
±2,±4,±1,±\frac{1}{2}
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta 4 agus nuair a roinneann q an chomhéifeacht thosaigh 2. Liostaigh gach iarrthóir \frac{p}{q}.
x=1
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
2x^{3}+5x^{2}-6x-4=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn 2x^{4}+3x^{3}-11x^{2}+2x+4 faoi x-1 chun 2x^{3}+5x^{2}-6x-4 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
±2,±4,±1,±\frac{1}{2}
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta -4 agus nuair a roinneann q an chomhéifeacht thosaigh 2. Liostaigh gach iarrthóir \frac{p}{q}.
x=-\frac{1}{2}
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{2}+2x-4=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn 2x^{3}+5x^{2}-6x-4 faoi 2\left(x+\frac{1}{2}\right)=2x+1 chun x^{2}+2x-4 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
x=\frac{-2±\sqrt{2^{2}-4\times 1\left(-4\right)}}{2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir 1 in ionad a, 2 in ionad b agus -4 in ionad c san fhoirmle chearnach.
x=\frac{-2±2\sqrt{5}}{2}
Déan áirimh.
x=-\sqrt{5}-1 x=\sqrt{5}-1
Réitigh an chothromóid x^{2}+2x-4=0 nuair is ionann ± agus luach deimhneach agus ± agus luach diúltach.
x=1 x=-\frac{1}{2} x=-\sqrt{5}-1 x=\sqrt{5}-1
Liostaigh na réitigh ar fad a aimsíodh.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}