Scipeáil chuig an bpríomhábhar
Réitigh do m. (complex solution)
Tick mark Image
Réitigh do n. (complex solution)
Tick mark Image
Réitigh do m.
Tick mark Image
Réitigh do n.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Méadaigh x agus x chun x^{2} a fháil.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(x-7\right)^{2} a leathnú.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Úsáid an t-airí dáileach chun x^{2} a mhéadú faoi 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}+x^{3} a mhéadú faoi m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}m+x^{3}m a mhéadú faoi o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}mo+x^{3}mo a mhéadú faoi n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Chun an mhalairt ar 6x^{2}mon+x^{3}mon a aimsiú, aimsigh an mhalairt ar gach téarma.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Bain x^{2} ón dá thaobh.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Cuir 14x leis an dá thaobh.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Bain 49 ón dá thaobh.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Dealaigh 49 ó -\frac{1}{20} chun -\frac{981}{20} a fháil.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
Comhcheangail na téarmaí ar fad ina bhfuil m.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Roinn an dá thaobh faoi -6x^{2}on-x^{3}on.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Má roinntear é faoi -6x^{2}on-x^{3}on cuirtear an iolrúchán faoi -6x^{2}on-x^{3}on ar ceal.
m=-\frac{-20x^{2}+280x-981}{20no\left(x+6\right)x^{2}}
Roinn -x^{2}+14x-\frac{981}{20} faoi -6x^{2}on-x^{3}on.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Méadaigh x agus x chun x^{2} a fháil.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(x-7\right)^{2} a leathnú.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Úsáid an t-airí dáileach chun x^{2} a mhéadú faoi 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}+x^{3} a mhéadú faoi m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}m+x^{3}m a mhéadú faoi o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}mo+x^{3}mo a mhéadú faoi n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Chun an mhalairt ar 6x^{2}mon+x^{3}mon a aimsiú, aimsigh an mhalairt ar gach téarma.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Bain x^{2} ón dá thaobh.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Cuir 14x leis an dá thaobh.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Bain 49 ón dá thaobh.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Dealaigh 49 ó -\frac{1}{20} chun -\frac{981}{20} a fháil.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
Comhcheangail na téarmaí ar fad ina bhfuil n.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Roinn an dá thaobh faoi -6x^{2}mo-x^{3}mo.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Má roinntear é faoi -6x^{2}mo-x^{3}mo cuirtear an iolrúchán faoi -6x^{2}mo-x^{3}mo ar ceal.
n=-\frac{-20x^{2}+280x-981}{20mo\left(x+6\right)x^{2}}
Roinn -x^{2}+14x-\frac{981}{20} faoi -6x^{2}mo-x^{3}mo.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Méadaigh x agus x chun x^{2} a fháil.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(x-7\right)^{2} a leathnú.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Úsáid an t-airí dáileach chun x^{2} a mhéadú faoi 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}+x^{3} a mhéadú faoi m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}m+x^{3}m a mhéadú faoi o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}mo+x^{3}mo a mhéadú faoi n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Chun an mhalairt ar 6x^{2}mon+x^{3}mon a aimsiú, aimsigh an mhalairt ar gach téarma.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Bain x^{2} ón dá thaobh.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Cuir 14x leis an dá thaobh.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Bain 49 ón dá thaobh.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Dealaigh 49 ó -\frac{1}{20} chun -\frac{981}{20} a fháil.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
Comhcheangail na téarmaí ar fad ina bhfuil m.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Roinn an dá thaobh faoi -6x^{2}on-x^{3}on.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Má roinntear é faoi -6x^{2}on-x^{3}on cuirtear an iolrúchán faoi -6x^{2}on-x^{3}on ar ceal.
m=\frac{-20x^{2}+280x-981}{-20no\left(x+6\right)x^{2}}
Roinn -\frac{981}{20}-x^{2}+14x faoi -6x^{2}on-x^{3}on.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Méadaigh x agus x chun x^{2} a fháil.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(x-7\right)^{2} a leathnú.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Úsáid an t-airí dáileach chun x^{2} a mhéadú faoi 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}+x^{3} a mhéadú faoi m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}m+x^{3}m a mhéadú faoi o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Úsáid an t-airí dáileach chun 6x^{2}mo+x^{3}mo a mhéadú faoi n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Chun an mhalairt ar 6x^{2}mon+x^{3}mon a aimsiú, aimsigh an mhalairt ar gach téarma.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Bain x^{2} ón dá thaobh.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Cuir 14x leis an dá thaobh.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Bain 49 ón dá thaobh.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Dealaigh 49 ó -\frac{1}{20} chun -\frac{981}{20} a fháil.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
Comhcheangail na téarmaí ar fad ina bhfuil n.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Roinn an dá thaobh faoi -6x^{2}mo-x^{3}mo.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Má roinntear é faoi -6x^{2}mo-x^{3}mo cuirtear an iolrúchán faoi -6x^{2}mo-x^{3}mo ar ceal.
n=\frac{-20x^{2}+280x-981}{-20mo\left(x+6\right)x^{2}}
Roinn -\frac{981}{20}-x^{2}+14x faoi -6x^{2}mo-x^{3}mo.