Réitigh do y.
y=\frac{x+3}{x\left(x-2\right)}
x\neq 2\text{ and }x\neq 0
Réitigh do x. (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{4y^{2}+16y+1}+2y+1}{2y}\text{; }x=\frac{-\sqrt{4y^{2}+16y+1}+2y+1}{2y}\text{, }&y\neq 0\\x=-3\text{, }&y=0\end{matrix}\right.
Réitigh do x.
\left\{\begin{matrix}x=\frac{\sqrt{4y^{2}+16y+1}+2y+1}{2y}\text{; }x=\frac{-\sqrt{4y^{2}+16y+1}+2y+1}{2y}\text{, }&y\leq -\frac{\sqrt{15}}{2}-2\text{ or }\left(y\neq 0\text{ and }y\geq \frac{\sqrt{15}}{2}-2\right)\\x=-3\text{, }&y=0\end{matrix}\right.
Graf
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
( x - 2 ) ( x y - 1 ) = 5
Roinn
Cóipeáladh go dtí an ghearrthaisce
yx^{2}-x-2xy+2=5
Úsáid an t-airí dáileach chun x-2 a mhéadú faoi xy-1.
yx^{2}-2xy+2=5+x
Cuir x leis an dá thaobh.
yx^{2}-2xy=5+x-2
Bain 2 ón dá thaobh.
yx^{2}-2xy=3+x
Dealaigh 2 ó 5 chun 3 a fháil.
\left(x^{2}-2x\right)y=3+x
Comhcheangail na téarmaí ar fad ina bhfuil y.
\left(x^{2}-2x\right)y=x+3
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(x^{2}-2x\right)y}{x^{2}-2x}=\frac{x+3}{x^{2}-2x}
Roinn an dá thaobh faoi x^{2}-2x.
y=\frac{x+3}{x^{2}-2x}
Má roinntear é faoi x^{2}-2x cuirtear an iolrúchán faoi x^{2}-2x ar ceal.
y=\frac{x+3}{x\left(x-2\right)}
Roinn x+3 faoi x^{2}-2x.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}