Réitigh do x.
x=-\frac{2y^{2}-24y-9}{\left(y-6\right)^{2}}
y\neq 6
Réitigh do y. (complex solution)
y=6+9\left(x+2\right)^{-\frac{1}{2}}
y=6-9\left(x+2\right)^{-\frac{1}{2}}\text{, }x\neq -2
Réitigh do y.
y=6+\frac{9}{\sqrt{x+2}}
y=6-\frac{9}{\sqrt{x+2}}\text{, }x>-2
Graf
Tráth na gCeist
Algebra
( x + 2 ) \cdot ( y - 6 ) ^ { 2 } = 81
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(x+2\right)\left(y^{2}-12y+36\right)=81
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(y-6\right)^{2} a leathnú.
xy^{2}-12xy+36x+2y^{2}-24y+72=81
Úsáid an t-airí dáileach chun x+2 a mhéadú faoi y^{2}-12y+36.
xy^{2}-12xy+36x-24y+72=81-2y^{2}
Bain 2y^{2} ón dá thaobh.
xy^{2}-12xy+36x+72=81-2y^{2}+24y
Cuir 24y leis an dá thaobh.
xy^{2}-12xy+36x=81-2y^{2}+24y-72
Bain 72 ón dá thaobh.
xy^{2}-12xy+36x=9-2y^{2}+24y
Dealaigh 72 ó 81 chun 9 a fháil.
\left(y^{2}-12y+36\right)x=9-2y^{2}+24y
Comhcheangail na téarmaí ar fad ina bhfuil x.
\left(y^{2}-12y+36\right)x=9+24y-2y^{2}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(y^{2}-12y+36\right)x}{y^{2}-12y+36}=\frac{9+24y-2y^{2}}{y^{2}-12y+36}
Roinn an dá thaobh faoi y^{2}-12y+36.
x=\frac{9+24y-2y^{2}}{y^{2}-12y+36}
Má roinntear é faoi y^{2}-12y+36 cuirtear an iolrúchán faoi y^{2}-12y+36 ar ceal.
x=\frac{9+24y-2y^{2}}{\left(y-6\right)^{2}}
Roinn 9-2y^{2}+24y faoi y^{2}-12y+36.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}