Réitigh do m.
m=-\frac{-2x^{2}+3x-8}{x\left(x+1\right)}
x\neq -1\text{ and }x\neq 0
Réitigh do x. (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{m^{2}+38m-55}-m-3}{2\left(m-2\right)}\text{; }x=-\frac{\sqrt{m^{2}+38m-55}+m+3}{2\left(m-2\right)}\text{, }&m\neq 2\\x=\frac{8}{5}\text{, }&m=2\end{matrix}\right.
Réitigh do x.
\left\{\begin{matrix}x=\frac{\sqrt{m^{2}+38m-55}-m-3}{2\left(m-2\right)}\text{; }x=-\frac{\sqrt{m^{2}+38m-55}+m+3}{2\left(m-2\right)}\text{, }&m\leq -4\sqrt{26}-19\text{ or }\left(m\neq 2\text{ and }m\geq 4\sqrt{26}-19\right)\\x=\frac{8}{5}\text{, }&m=2\end{matrix}\right.
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
mx^{2}-2x^{2}+\left(m+3\right)x-8=0
Úsáid an t-airí dáileach chun m-2 a mhéadú faoi x^{2}.
mx^{2}-2x^{2}+mx+3x-8=0
Úsáid an t-airí dáileach chun m+3 a mhéadú faoi x.
mx^{2}+mx+3x-8=2x^{2}
Cuir 2x^{2} leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
mx^{2}+mx-8=2x^{2}-3x
Bain 3x ón dá thaobh.
mx^{2}+mx=2x^{2}-3x+8
Cuir 8 leis an dá thaobh.
\left(x^{2}+x\right)m=2x^{2}-3x+8
Comhcheangail na téarmaí ar fad ina bhfuil m.
\frac{\left(x^{2}+x\right)m}{x^{2}+x}=\frac{2x^{2}-3x+8}{x^{2}+x}
Roinn an dá thaobh faoi x^{2}+x.
m=\frac{2x^{2}-3x+8}{x^{2}+x}
Má roinntear é faoi x^{2}+x cuirtear an iolrúchán faoi x^{2}+x ar ceal.
m=\frac{2x^{2}-3x+8}{x\left(x+1\right)}
Roinn 2x^{2}-3x+8 faoi x^{2}+x.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}