Scipeáil chuig an bpríomhábhar
Réitigh do a.
Tick mark Image
Réitigh do b.
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a+a\sqrt{2}+b\sqrt{2}+b\left(\sqrt{2}\right)^{2}=25+17\sqrt{2}
Úsáid an t-airí dáileach chun a+b\sqrt{2} a mhéadú faoi 1+\sqrt{2}.
a+a\sqrt{2}+b\sqrt{2}+b\times 2=25+17\sqrt{2}
Is é 2 uimhir chearnach \sqrt{2}.
a+a\sqrt{2}+b\times 2=25+17\sqrt{2}-b\sqrt{2}
Bain b\sqrt{2} ón dá thaobh.
a+a\sqrt{2}=25+17\sqrt{2}-b\sqrt{2}-b\times 2
Bain b\times 2 ón dá thaobh.
a+a\sqrt{2}=25+17\sqrt{2}-b\sqrt{2}-2b
Méadaigh -1 agus 2 chun -2 a fháil.
\left(1+\sqrt{2}\right)a=25+17\sqrt{2}-b\sqrt{2}-2b
Comhcheangail na téarmaí ar fad ina bhfuil a.
\left(\sqrt{2}+1\right)a=-\sqrt{2}b-2b+17\sqrt{2}+25
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(\sqrt{2}+1\right)a}{\sqrt{2}+1}=\frac{-\sqrt{2}b-2b+17\sqrt{2}+25}{\sqrt{2}+1}
Roinn an dá thaobh faoi 1+\sqrt{2}.
a=\frac{-\sqrt{2}b-2b+17\sqrt{2}+25}{\sqrt{2}+1}
Má roinntear é faoi 1+\sqrt{2} cuirtear an iolrúchán faoi 1+\sqrt{2} ar ceal.
a=-\sqrt{2}b+8\sqrt{2}+9
Roinn 25+17\sqrt{2}-b\sqrt{2}-2b faoi 1+\sqrt{2}.
a+a\sqrt{2}+b\sqrt{2}+b\left(\sqrt{2}\right)^{2}=25+17\sqrt{2}
Úsáid an t-airí dáileach chun a+b\sqrt{2} a mhéadú faoi 1+\sqrt{2}.
a+a\sqrt{2}+b\sqrt{2}+b\times 2=25+17\sqrt{2}
Is é 2 uimhir chearnach \sqrt{2}.
a\sqrt{2}+b\sqrt{2}+b\times 2=25+17\sqrt{2}-a
Bain a ón dá thaobh.
b\sqrt{2}+b\times 2=25+17\sqrt{2}-a-a\sqrt{2}
Bain a\sqrt{2} ón dá thaobh.
\sqrt{2}b+2b=-\sqrt{2}a-a+17\sqrt{2}+25
Athordaigh na téarmaí.
\left(\sqrt{2}+2\right)b=-\sqrt{2}a-a+17\sqrt{2}+25
Comhcheangail na téarmaí ar fad ina bhfuil b.
\frac{\left(\sqrt{2}+2\right)b}{\sqrt{2}+2}=\frac{-\sqrt{2}a-a+17\sqrt{2}+25}{\sqrt{2}+2}
Roinn an dá thaobh faoi \sqrt{2}+2.
b=\frac{-\sqrt{2}a-a+17\sqrt{2}+25}{\sqrt{2}+2}
Má roinntear é faoi \sqrt{2}+2 cuirtear an iolrúchán faoi \sqrt{2}+2 ar ceal.
b=\frac{\left(2-\sqrt{2}\right)\left(-\sqrt{2}a-a+17\sqrt{2}+25\right)}{2}
Roinn -\sqrt{2}a-a+17\sqrt{2}+25 faoi \sqrt{2}+2.