Réitigh do a.
a=-\sqrt{2}\left(b-8\right)+9
Réitigh do b.
b=-\frac{\sqrt{2}\left(a-8\sqrt{2}-9\right)}{2}
Tráth na gCeist
Linear Equation
5 fadhbanna cosúil le:
( a + b \sqrt { 2 } ) \cdot ( 1 + \sqrt { 2 } ) = 25 + 17 \sqrt { 2 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
a+a\sqrt{2}+b\sqrt{2}+b\left(\sqrt{2}\right)^{2}=25+17\sqrt{2}
Úsáid an t-airí dáileach chun a+b\sqrt{2} a mhéadú faoi 1+\sqrt{2}.
a+a\sqrt{2}+b\sqrt{2}+b\times 2=25+17\sqrt{2}
Is é 2 uimhir chearnach \sqrt{2}.
a+a\sqrt{2}+b\times 2=25+17\sqrt{2}-b\sqrt{2}
Bain b\sqrt{2} ón dá thaobh.
a+a\sqrt{2}=25+17\sqrt{2}-b\sqrt{2}-b\times 2
Bain b\times 2 ón dá thaobh.
a+a\sqrt{2}=25+17\sqrt{2}-b\sqrt{2}-2b
Méadaigh -1 agus 2 chun -2 a fháil.
\left(1+\sqrt{2}\right)a=25+17\sqrt{2}-b\sqrt{2}-2b
Comhcheangail na téarmaí ar fad ina bhfuil a.
\left(\sqrt{2}+1\right)a=-\sqrt{2}b-2b+17\sqrt{2}+25
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(\sqrt{2}+1\right)a}{\sqrt{2}+1}=\frac{-\sqrt{2}b-2b+17\sqrt{2}+25}{\sqrt{2}+1}
Roinn an dá thaobh faoi 1+\sqrt{2}.
a=\frac{-\sqrt{2}b-2b+17\sqrt{2}+25}{\sqrt{2}+1}
Má roinntear é faoi 1+\sqrt{2} cuirtear an iolrúchán faoi 1+\sqrt{2} ar ceal.
a=-\sqrt{2}b+8\sqrt{2}+9
Roinn 25+17\sqrt{2}-b\sqrt{2}-2b faoi 1+\sqrt{2}.
a+a\sqrt{2}+b\sqrt{2}+b\left(\sqrt{2}\right)^{2}=25+17\sqrt{2}
Úsáid an t-airí dáileach chun a+b\sqrt{2} a mhéadú faoi 1+\sqrt{2}.
a+a\sqrt{2}+b\sqrt{2}+b\times 2=25+17\sqrt{2}
Is é 2 uimhir chearnach \sqrt{2}.
a\sqrt{2}+b\sqrt{2}+b\times 2=25+17\sqrt{2}-a
Bain a ón dá thaobh.
b\sqrt{2}+b\times 2=25+17\sqrt{2}-a-a\sqrt{2}
Bain a\sqrt{2} ón dá thaobh.
\sqrt{2}b+2b=-\sqrt{2}a-a+17\sqrt{2}+25
Athordaigh na téarmaí.
\left(\sqrt{2}+2\right)b=-\sqrt{2}a-a+17\sqrt{2}+25
Comhcheangail na téarmaí ar fad ina bhfuil b.
\frac{\left(\sqrt{2}+2\right)b}{\sqrt{2}+2}=\frac{-\sqrt{2}a-a+17\sqrt{2}+25}{\sqrt{2}+2}
Roinn an dá thaobh faoi \sqrt{2}+2.
b=\frac{-\sqrt{2}a-a+17\sqrt{2}+25}{\sqrt{2}+2}
Má roinntear é faoi \sqrt{2}+2 cuirtear an iolrúchán faoi \sqrt{2}+2 ar ceal.
b=\frac{\left(2-\sqrt{2}\right)\left(-\sqrt{2}a-a+17\sqrt{2}+25\right)}{2}
Roinn -\sqrt{2}a-a+17\sqrt{2}+25 faoi \sqrt{2}+2.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}