Luacháil
4\sqrt[6]{|p|}
Difreálaigh w.r.t. p
\frac{2sign(p)}{3\left(|p|\right)^{\frac{5}{6}}}
Roinn
Cóipeáladh go dtí an ghearrthaisce
256^{\frac{1}{4}}\left(p^{\frac{2}{3}}\right)^{\frac{1}{4}}
Fairsingigh \left(256p^{\frac{2}{3}}\right)^{\frac{1}{4}}
256^{\frac{1}{4}}p^{\frac{1}{6}}
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh \frac{2}{3} agus \frac{1}{4} chun \frac{1}{6} a bhaint amach.
4p^{\frac{1}{6}}
Ríomh cumhacht 256 de \frac{1}{4} agus faigh 4.
\frac{1}{4}\times \left(256p^{\frac{2}{3}}\right)^{\frac{1}{4}-1}\frac{\mathrm{d}}{\mathrm{d}p}(256p^{\frac{2}{3}})
Más F comhshuíomh dhá fheidhm indifreáilte f\left(u\right) agus u=g\left(x\right), is é sin, más F\left(x\right)=f\left(g\left(x\right)\right), mar sin is ionann díorthach F agus díorthach f maidir le u méadaithe faoi dhíorthach g maidir le x, is é sin, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{4}\times \left(256p^{\frac{2}{3}}\right)^{-\frac{3}{4}}\times \frac{2}{3}\times 256p^{\frac{2}{3}-1}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
\frac{128}{3}p^{-\frac{1}{3}}\times \left(256p^{\frac{2}{3}}\right)^{-\frac{3}{4}}
Simpligh.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}