Luacháil
-\frac{b^{3}}{4}+2b^{2}
Fairsingigh
-\frac{b^{3}}{4}+2b^{2}
Tráth na gCeist
Algebra
( 2 a ^ { 2 } + b ) ^ { 2 } - 2 ( - 2 a ^ { 2 } ) ^ { 2 } - b ( \frac { 1 } { 2 } b ) ^ { 2 } + ( 2 a ^ { 2 } - b ) ^ { 2 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Úsáid an teoirim dhéthéarmach \left(p+q\right)^{2}=p^{2}+2pq+q^{2} chun \left(2a^{2}+b\right)^{2} a leathnú.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Fairsingigh \left(-2a^{2}\right)^{2}
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Ríomh cumhacht -2 de 2 agus faigh 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Méadaigh 2 agus 4 chun 8 a fháil.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Comhcheangail 4a^{4} agus -8a^{4} chun -4a^{4} a fháil.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Fairsingigh \left(\frac{1}{2}b\right)^{2}
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Ríomh cumhacht \frac{1}{2} de 2 agus faigh \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Chun cumhachtaí den bhonn céanna a iolrú, suimigh a n-easpónaint. Suimigh 1 agus 2 chun 3 a bhaint amach.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Úsáid an teoirim dhéthéarmach \left(p-q\right)^{2}=p^{2}-2pq+q^{2} chun \left(2a^{2}-b\right)^{2} a leathnú.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Méadaigh -1 agus \frac{1}{4} chun -\frac{1}{4} a fháil.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Comhcheangail -4a^{4} agus 4a^{4} chun 0 a fháil.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Comhcheangail 4a^{2}b agus -4a^{2}b chun 0 a fháil.
2b^{2}-\frac{1}{4}b^{3}
Comhcheangail b^{2} agus b^{2} chun 2b^{2} a fháil.
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Úsáid an teoirim dhéthéarmach \left(p+q\right)^{2}=p^{2}+2pq+q^{2} chun \left(2a^{2}+b\right)^{2} a leathnú.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Fairsingigh \left(-2a^{2}\right)^{2}
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Ríomh cumhacht -2 de 2 agus faigh 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Méadaigh 2 agus 4 chun 8 a fháil.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Comhcheangail 4a^{4} agus -8a^{4} chun -4a^{4} a fháil.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Fairsingigh \left(\frac{1}{2}b\right)^{2}
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Ríomh cumhacht \frac{1}{2} de 2 agus faigh \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Chun cumhachtaí den bhonn céanna a iolrú, suimigh a n-easpónaint. Suimigh 1 agus 2 chun 3 a bhaint amach.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Úsáid an teoirim dhéthéarmach \left(p-q\right)^{2}=p^{2}-2pq+q^{2} chun \left(2a^{2}-b\right)^{2} a leathnú.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Méadaigh -1 agus \frac{1}{4} chun -\frac{1}{4} a fháil.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Comhcheangail -4a^{4} agus 4a^{4} chun 0 a fháil.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Comhcheangail 4a^{2}b agus -4a^{2}b chun 0 a fháil.
2b^{2}-\frac{1}{4}b^{3}
Comhcheangail b^{2} agus b^{2} chun 2b^{2} a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}