Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(2\sqrt{2}-1\right)^{2} a leathnú.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Is é 2 uimhir chearnach \sqrt{2}.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Méadaigh 4 agus 2 chun 8 a fháil.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Suimigh 8 agus 1 chun 9 a fháil.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
Fachtóirigh 12=2^{2}\times 3. Athscríobh fréamh cearnach an toraidh \sqrt{2^{2}\times 3} mar thoradh na bhfréamhacha cearnacha \sqrt{2^{2}}\sqrt{3}. Tóg fréamh chearnach 2^{2}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{3} chun ainmneoir \frac{2\sqrt{3}-3}{\sqrt{3}} a thiontú in uimhir chóimheasta.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 9-4\sqrt{2} faoi \frac{3}{3}.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Tá an t-ainmneoir céanna ag \frac{3\left(9-4\sqrt{2}\right)}{3} agus \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Déan iolrúcháin in 3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Déan áirimh in 27-12\sqrt{2}+6-3\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Roinn 33-12\sqrt{2}-3\sqrt{3} faoi 3 chun 11-4\sqrt{2}-\sqrt{3} a fháil.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
Úsáid an t-airí dáileach chun 2\sqrt{3}-1 a mhéadú faoi -2\sqrt{3}-1 agus chun téarmaí comhchosúla a chumasc.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
Is é 3 uimhir chearnach \sqrt{3}.
11-4\sqrt{2}-\sqrt{3}-12+1
Méadaigh -4 agus 3 chun -12 a fháil.
11-4\sqrt{2}-\sqrt{3}-11
Suimigh -12 agus 1 chun -11 a fháil.
-4\sqrt{2}-\sqrt{3}
Dealaigh 11 ó 11 chun 0 a fháil.