( \sqrt { 8 } - 2 \sqrt { 025 ) } - ( \sqrt { 1 \frac { 1 } { 8 } } + \sqrt { 50 } + \frac { 2 } { 3 } \sqrt { 12 } )
Luacháil
-\frac{4\sqrt{3}}{3}-\frac{15\sqrt{2}}{4}-10\approx -17.612701936
Fachtóirigh
\frac{-16 \sqrt{3} - 45 \sqrt{2} - 120}{12} = -17.612701935657608
Roinn
Cóipeáladh go dtí an ghearrthaisce
2\sqrt{2}-2\sqrt{25}-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Fachtóirigh 8=2^{2}\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{2^{2}\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{2^{2}}\sqrt{2}. Tóg fréamh chearnach 2^{2}.
2\sqrt{2}-2\times 5-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Áirigh fréamh chearnach 25 agus faigh 5.
2\sqrt{2}-10-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Méadaigh -2 agus 5 chun -10 a fháil.
2\sqrt{2}-10-\left(\sqrt{\frac{8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Méadaigh 1 agus 8 chun 8 a fháil.
2\sqrt{2}-10-\left(\sqrt{\frac{9}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Suimigh 8 agus 1 chun 9 a fháil.
2\sqrt{2}-10-\left(\frac{\sqrt{9}}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Athscríobh fréamh cearnach na roinnte \sqrt{\frac{9}{8}} mar roinnt na bhfréamhacha cearnacha \frac{\sqrt{9}}{\sqrt{8}}.
2\sqrt{2}-10-\left(\frac{3}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Áirigh fréamh chearnach 9 agus faigh 3.
2\sqrt{2}-10-\left(\frac{3}{2\sqrt{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Fachtóirigh 8=2^{2}\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{2^{2}\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{2^{2}}\sqrt{2}. Tóg fréamh chearnach 2^{2}.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2} chun ainmneoir \frac{3}{2\sqrt{2}} a thiontú in uimhir chóimheasta.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{2\times 2}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Is é 2 uimhir chearnach \sqrt{2}.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{4}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Méadaigh 2 agus 2 chun 4 a fháil.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{4}+5\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
Fachtóirigh 50=5^{2}\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{5^{2}\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{5^{2}}\sqrt{2}. Tóg fréamh chearnach 5^{2}.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
Comhcheangail \frac{3\sqrt{2}}{4} agus 5\sqrt{2} chun \frac{23}{4}\sqrt{2} a fháil.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\times 2\sqrt{3}\right)
Fachtóirigh 12=2^{2}\times 3. Athscríobh fréamh cearnach an toraidh \sqrt{2^{2}\times 3} mar thoradh na bhfréamhacha cearnacha \sqrt{2^{2}}\sqrt{3}. Tóg fréamh chearnach 2^{2}.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2\times 2}{3}\sqrt{3}\right)
Scríobh \frac{2}{3}\times 2 mar chodán aonair.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3}\right)
Méadaigh 2 agus 2 chun 4 a fháil.
2\sqrt{2}-10-\frac{23}{4}\sqrt{2}-\frac{4}{3}\sqrt{3}
Chun an mhalairt ar \frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3} a aimsiú, aimsigh an mhalairt ar gach téarma.
-\frac{15}{4}\sqrt{2}-10-\frac{4}{3}\sqrt{3}
Comhcheangail 2\sqrt{2} agus -\frac{23}{4}\sqrt{2} chun -\frac{15}{4}\sqrt{2} a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}