Luacháil
\frac{13\sqrt{3}}{3}+\frac{15\sqrt{2}}{4}\approx 12.808854358
Roinn
Cóipeáladh go dtí an ghearrthaisce
4\sqrt{2}+\sqrt{0\times 5}-2\sqrt{\frac{1}{3}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Fachtóirigh 32=4^{2}\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{4^{2}\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{4^{2}}\sqrt{2}. Tóg fréamh chearnach 4^{2}.
4\sqrt{2}+\sqrt{0}-2\sqrt{\frac{1}{3}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Méadaigh 0 agus 5 chun 0 a fháil.
4\sqrt{2}+0-2\sqrt{\frac{1}{3}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Áirigh fréamh chearnach 0 agus faigh 0.
4\sqrt{2}+0-2\times \frac{\sqrt{1}}{\sqrt{3}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Athscríobh fréamh cearnach na roinnte \sqrt{\frac{1}{3}} mar roinnt na bhfréamhacha cearnacha \frac{\sqrt{1}}{\sqrt{3}}.
4\sqrt{2}+0-2\times \frac{1}{\sqrt{3}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Áirigh fréamh chearnach 1 agus faigh 1.
4\sqrt{2}+0-2\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{3} chun ainmneoir \frac{1}{\sqrt{3}} a thiontú in uimhir chóimheasta.
4\sqrt{2}+0-2\times \frac{\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Is é 3 uimhir chearnach \sqrt{3}.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Scríobh -2\times \frac{\sqrt{3}}{3} mar chodán aonair.
\frac{3\left(4\sqrt{2}+0\right)}{3}+\frac{-2\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 4\sqrt{2}+0 faoi \frac{3}{3}.
\frac{3\left(4\sqrt{2}+0\right)-2\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Tá an t-ainmneoir céanna ag \frac{3\left(4\sqrt{2}+0\right)}{3} agus \frac{-2\sqrt{3}}{3} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Déan iolrúcháin in 3\left(4\sqrt{2}+0\right)-2\sqrt{3}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{1}}{\sqrt{8}}-\sqrt{75}\right)
Athscríobh fréamh cearnach na roinnte \sqrt{\frac{1}{8}} mar roinnt na bhfréamhacha cearnacha \frac{\sqrt{1}}{\sqrt{8}}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{1}{\sqrt{8}}-\sqrt{75}\right)
Áirigh fréamh chearnach 1 agus faigh 1.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{1}{2\sqrt{2}}-\sqrt{75}\right)
Fachtóirigh 8=2^{2}\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{2^{2}\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{2^{2}}\sqrt{2}. Tóg fréamh chearnach 2^{2}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{75}\right)
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2} chun ainmneoir \frac{1}{2\sqrt{2}} a thiontú in uimhir chóimheasta.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{2\times 2}-\sqrt{75}\right)
Is é 2 uimhir chearnach \sqrt{2}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{4}-\sqrt{75}\right)
Méadaigh 2 agus 2 chun 4 a fháil.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{4}-5\sqrt{3}\right)
Fachtóirigh 75=5^{2}\times 3. Athscríobh fréamh cearnach an toraidh \sqrt{5^{2}\times 3} mar thoradh na bhfréamhacha cearnacha \sqrt{5^{2}}\sqrt{3}. Tóg fréamh chearnach 5^{2}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{4}+\frac{4\left(-5\right)\sqrt{3}}{4}\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh -5\sqrt{3} faoi \frac{4}{4}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\frac{\sqrt{2}+4\left(-5\right)\sqrt{3}}{4}
Tá an t-ainmneoir céanna ag \frac{\sqrt{2}}{4} agus \frac{4\left(-5\right)\sqrt{3}}{4} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\frac{\sqrt{2}-20\sqrt{3}}{4}
Déan iolrúcháin in \sqrt{2}+4\left(-5\right)\sqrt{3}.
\frac{4\left(12\sqrt{2}-2\sqrt{3}\right)}{12}-\frac{3\left(\sqrt{2}-20\sqrt{3}\right)}{12}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 3 agus 4 ná 12. Méadaigh \frac{12\sqrt{2}-2\sqrt{3}}{3} faoi \frac{4}{4}. Méadaigh \frac{\sqrt{2}-20\sqrt{3}}{4} faoi \frac{3}{3}.
\frac{4\left(12\sqrt{2}-2\sqrt{3}\right)-3\left(\sqrt{2}-20\sqrt{3}\right)}{12}
Tá an t-ainmneoir céanna ag \frac{4\left(12\sqrt{2}-2\sqrt{3}\right)}{12} agus \frac{3\left(\sqrt{2}-20\sqrt{3}\right)}{12} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{48\sqrt{2}-8\sqrt{3}-3\sqrt{2}+60\sqrt{3}}{12}
Déan iolrúcháin in 4\left(12\sqrt{2}-2\sqrt{3}\right)-3\left(\sqrt{2}-20\sqrt{3}\right).
\frac{45\sqrt{2}+52\sqrt{3}}{12}
Déan áirimh in 48\sqrt{2}-8\sqrt{3}-3\sqrt{2}+60\sqrt{3}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}