Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Fachtóirigh a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a+B agus \left(B+a\right)^{2} ná \left(B+a\right)^{2}. Méadaigh \frac{a^{2}}{a+B} faoi \frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tá an t-ainmneoir céanna ag \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} agus \frac{a^{3}}{\left(B+a\right)^{2}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Déan iolrúcháin in a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Cumaisc téarmaí comhchosúla in: a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Fachtóirigh a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a+B agus \left(B+a\right)\left(-B+a\right) ná \left(B+a\right)\left(-B+a\right). Méadaigh \frac{a}{a+B} faoi \frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tá an t-ainmneoir céanna ag \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} agus \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Déan iolrúcháin in a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Cumaisc téarmaí comhchosúla in: -aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Roinn \frac{a^{2}B}{\left(B+a\right)^{2}} faoi \frac{-aB}{\left(B+a\right)\left(-B+a\right)} trí \frac{a^{2}B}{\left(B+a\right)^{2}} a mhéadú faoi dheilín \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Cealaigh Ba\left(B+a\right) mar uimhreoir agus ainmneoir.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Úsáid an t-airí dáileach chun a a mhéadú faoi -B+a.
\frac{-aB+a^{2}}{-B-a}
Chun an mhalairt ar B+a a aimsiú, aimsigh an mhalairt ar gach téarma.
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Fachtóirigh a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a+B agus \left(B+a\right)^{2} ná \left(B+a\right)^{2}. Méadaigh \frac{a^{2}}{a+B} faoi \frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tá an t-ainmneoir céanna ag \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} agus \frac{a^{3}}{\left(B+a\right)^{2}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Déan iolrúcháin in a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Cumaisc téarmaí comhchosúla in: a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Fachtóirigh a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a+B agus \left(B+a\right)\left(-B+a\right) ná \left(B+a\right)\left(-B+a\right). Méadaigh \frac{a}{a+B} faoi \frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tá an t-ainmneoir céanna ag \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} agus \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Déan iolrúcháin in a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Cumaisc téarmaí comhchosúla in: -aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Roinn \frac{a^{2}B}{\left(B+a\right)^{2}} faoi \frac{-aB}{\left(B+a\right)\left(-B+a\right)} trí \frac{a^{2}B}{\left(B+a\right)^{2}} a mhéadú faoi dheilín \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Cealaigh Ba\left(B+a\right) mar uimhreoir agus ainmneoir.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Úsáid an t-airí dáileach chun a a mhéadú faoi -B+a.
\frac{-aB+a^{2}}{-B-a}
Chun an mhalairt ar B+a a aimsiú, aimsigh an mhalairt ar gach téarma.