Fíoraigh
bréagach
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{2\left(1-\frac{1}{2}\right)+2^{-6}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus -3 chun -6 a bhaint amach.
\frac{2\times \frac{1}{2}+2^{-6}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Dealaigh \frac{1}{2} ó 1 chun \frac{1}{2} a fháil.
\frac{1+2^{-6}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Méadaigh 2 agus \frac{1}{2} chun 1 a fháil.
\frac{1+\frac{1}{64}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Ríomh cumhacht 2 de -6 agus faigh \frac{1}{64}.
\frac{\frac{65}{64}}{-\frac{3}{4}-\left(-3\right)+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Suimigh 1 agus \frac{1}{64} chun \frac{65}{64} a fháil.
\frac{\frac{65}{64}}{-\frac{3}{4}+3+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Tá 3 urchomhairleach le -3.
\frac{\frac{65}{64}}{\frac{9}{4}+\frac{2}{5}\times \frac{3}{8}}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Suimigh -\frac{3}{4} agus 3 chun \frac{9}{4} a fháil.
\frac{\frac{65}{64}}{\frac{9}{4}+\frac{3}{20}}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Méadaigh \frac{2}{5} agus \frac{3}{8} chun \frac{3}{20} a fháil.
\frac{\frac{65}{64}}{\frac{12}{5}}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Suimigh \frac{9}{4} agus \frac{3}{20} chun \frac{12}{5} a fháil.
\frac{65}{64}\times \frac{5}{12}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Roinn \frac{65}{64} faoi \frac{12}{5} trí \frac{65}{64} a mhéadú faoi dheilín \frac{12}{5}.
\frac{325}{768}=\frac{325}{768}\text{ and }\frac{325}{768}=0.4232
Méadaigh \frac{65}{64} agus \frac{5}{12} chun \frac{325}{768} a fháil.
\text{true}\text{ and }\frac{325}{768}=0.4232
Cuir \frac{325}{768} agus \frac{325}{768} i gcomparáid lena chéile.
\text{true}\text{ and }\frac{325}{768}=\frac{529}{1250}
Coinbhéartaigh an uimhir dheachúil 0.4232 i gcodán \frac{4232}{10000}. Laghdaigh an codán \frac{4232}{10000} chuig na téarmaí is ísle trí 8 a bhaint agus a chealú.
\text{true}\text{ and }\frac{203125}{480000}=\frac{203136}{480000}
Is é an t-iolrach is lú coitianta de 768 agus 1250 ná 480000. Coinbhéartaigh \frac{325}{768} agus \frac{529}{1250} chuig codáin a bhfuil an t-ainmneoir 480000 acu.
\text{true}\text{ and }\text{false}
Cuir \frac{203125}{480000} agus \frac{203136}{480000} i gcomparáid lena chéile.
\text{false}
Is é cónasc \text{true} agus \text{false} ná \text{false}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}