Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\frac{2\left(x+3\right)}{\left(x+3\right)\left(x+5\right)}+\frac{4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+5 agus x+3 ná \left(x+3\right)\left(x+5\right). Méadaigh \frac{2}{x+5} faoi \frac{x+3}{x+3}. Méadaigh \frac{4}{x+3} faoi \frac{x+5}{x+5}.
\frac{\frac{2\left(x+3\right)+4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Tá an t-ainmneoir céanna ag \frac{2\left(x+3\right)}{\left(x+3\right)\left(x+5\right)} agus \frac{4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{2x+6+4x+20}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Déan iolrúcháin in 2\left(x+3\right)+4\left(x+5\right).
\frac{\frac{6x+26}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Cumaisc téarmaí comhchosúla in: 2x+6+4x+20.
\frac{\left(6x+26\right)\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)\left(3x+13\right)}
Roinn \frac{6x+26}{\left(x+3\right)\left(x+5\right)} faoi \frac{3x+13}{x^{2}+3x+15} trí \frac{6x+26}{\left(x+3\right)\left(x+5\right)} a mhéadú faoi dheilín \frac{3x+13}{x^{2}+3x+15}.
\frac{2\left(3x+13\right)\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)\left(3x+13\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
\frac{2\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)}
Cealaigh 3x+13 mar uimhreoir agus ainmneoir.
\frac{2x^{2}+6x+30}{x^{2}+8x+15}
Fairsingigh an slonn.
\frac{\frac{2\left(x+3\right)}{\left(x+3\right)\left(x+5\right)}+\frac{4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+5 agus x+3 ná \left(x+3\right)\left(x+5\right). Méadaigh \frac{2}{x+5} faoi \frac{x+3}{x+3}. Méadaigh \frac{4}{x+3} faoi \frac{x+5}{x+5}.
\frac{\frac{2\left(x+3\right)+4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Tá an t-ainmneoir céanna ag \frac{2\left(x+3\right)}{\left(x+3\right)\left(x+5\right)} agus \frac{4\left(x+5\right)}{\left(x+3\right)\left(x+5\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{2x+6+4x+20}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Déan iolrúcháin in 2\left(x+3\right)+4\left(x+5\right).
\frac{\frac{6x+26}{\left(x+3\right)\left(x+5\right)}}{\frac{3x+13}{x^{2}+3x+15}}
Cumaisc téarmaí comhchosúla in: 2x+6+4x+20.
\frac{\left(6x+26\right)\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)\left(3x+13\right)}
Roinn \frac{6x+26}{\left(x+3\right)\left(x+5\right)} faoi \frac{3x+13}{x^{2}+3x+15} trí \frac{6x+26}{\left(x+3\right)\left(x+5\right)} a mhéadú faoi dheilín \frac{3x+13}{x^{2}+3x+15}.
\frac{2\left(3x+13\right)\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)\left(3x+13\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
\frac{2\left(x^{2}+3x+15\right)}{\left(x+3\right)\left(x+5\right)}
Cealaigh 3x+13 mar uimhreoir agus ainmneoir.
\frac{2x^{2}+6x+30}{x^{2}+8x+15}
Fairsingigh an slonn.