Luacháil
\frac{x+1}{x^{3}}
Fairsingigh
\frac{x+1}{x^{3}}
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(\frac{1}{\left(x-1\right)x^{3}}-\frac{1}{\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Fachtóirigh x^{4}-x^{3}. Fachtóirigh x^{4}+x^{3}.
\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}}-\frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)x^{3} agus \left(x+1\right)x^{3} ná \left(x-1\right)\left(x+1\right)x^{3}. Méadaigh \frac{1}{\left(x-1\right)x^{3}} faoi \frac{x+1}{x+1}. Méadaigh \frac{1}{\left(x+1\right)x^{3}} faoi \frac{x-1}{x-1}.
\frac{x+1-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Tá an t-ainmneoir céanna ag \frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}} agus \frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x+1-x+1}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Déan iolrúcháin in x+1-\left(x-1\right).
\frac{2}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Cumaisc téarmaí comhchosúla in: x+1-x+1.
\frac{2\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}\times 2}+\frac{1}{x^{2}}
Méadaigh \frac{2}{\left(x-1\right)\left(x+1\right)x^{3}} faoi \frac{x^{2}-1}{2} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{1}{x^{2}}
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+1\right)x^{3} agus x^{2} ná \left(x-1\right)\left(x+1\right)x^{3}. Méadaigh \frac{1}{x^{2}} faoi \frac{x\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}.
\frac{x^{2}-1+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}
Tá an t-ainmneoir céanna ag \frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}} agus \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}-1+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)x^{3}}
Déan iolrúcháin in x^{2}-1+x\left(x-1\right)\left(x+1\right).
\frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}
Cumaisc téarmaí comhchosúla in: x^{2}-1+x^{3}+x^{2}-x^{2}-x.
\frac{\left(x-1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)x^{3}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}.
\frac{x+1}{x^{3}}
Cealaigh \left(x-1\right)\left(x+1\right) mar uimhreoir agus ainmneoir.
\left(\frac{1}{\left(x-1\right)x^{3}}-\frac{1}{\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Fachtóirigh x^{4}-x^{3}. Fachtóirigh x^{4}+x^{3}.
\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}}-\frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)x^{3} agus \left(x+1\right)x^{3} ná \left(x-1\right)\left(x+1\right)x^{3}. Méadaigh \frac{1}{\left(x-1\right)x^{3}} faoi \frac{x+1}{x+1}. Méadaigh \frac{1}{\left(x+1\right)x^{3}} faoi \frac{x-1}{x-1}.
\frac{x+1-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Tá an t-ainmneoir céanna ag \frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}} agus \frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x+1-x+1}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Déan iolrúcháin in x+1-\left(x-1\right).
\frac{2}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Cumaisc téarmaí comhchosúla in: x+1-x+1.
\frac{2\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}\times 2}+\frac{1}{x^{2}}
Méadaigh \frac{2}{\left(x-1\right)\left(x+1\right)x^{3}} faoi \frac{x^{2}-1}{2} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{1}{x^{2}}
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+1\right)x^{3} agus x^{2} ná \left(x-1\right)\left(x+1\right)x^{3}. Méadaigh \frac{1}{x^{2}} faoi \frac{x\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}.
\frac{x^{2}-1+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}
Tá an t-ainmneoir céanna ag \frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}} agus \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}-1+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)x^{3}}
Déan iolrúcháin in x^{2}-1+x\left(x-1\right)\left(x+1\right).
\frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}
Cumaisc téarmaí comhchosúla in: x^{2}-1+x^{3}+x^{2}-x^{2}-x.
\frac{\left(x-1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)x^{3}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}.
\frac{x+1}{x^{3}}
Cealaigh \left(x-1\right)\left(x+1\right) mar uimhreoir agus ainmneoir.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}