Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\left(\frac{1}{\left(x-1\right)x^{3}}-\frac{1}{\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Fachtóirigh x^{4}-x^{3}. Fachtóirigh x^{4}+x^{3}.
\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}}-\frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)x^{3} agus \left(x+1\right)x^{3} ná \left(x-1\right)\left(x+1\right)x^{3}. Méadaigh \frac{1}{\left(x-1\right)x^{3}} faoi \frac{x+1}{x+1}. Méadaigh \frac{1}{\left(x+1\right)x^{3}} faoi \frac{x-1}{x-1}.
\frac{x+1-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Tá an t-ainmneoir céanna ag \frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}} agus \frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x+1-x+1}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Déan iolrúcháin in x+1-\left(x-1\right).
\frac{2}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Cumaisc téarmaí comhchosúla in: x+1-x+1.
\frac{2\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}\times 2}+\frac{1}{x^{2}}
Méadaigh \frac{2}{\left(x-1\right)\left(x+1\right)x^{3}} faoi \frac{x^{2}-1}{2} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{1}{x^{2}}
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+1\right)x^{3} agus x^{2} ná \left(x-1\right)\left(x+1\right)x^{3}. Méadaigh \frac{1}{x^{2}} faoi \frac{x\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}.
\frac{x^{2}-1+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}
Tá an t-ainmneoir céanna ag \frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}} agus \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}-1+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)x^{3}}
Déan iolrúcháin in x^{2}-1+x\left(x-1\right)\left(x+1\right).
\frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}
Cumaisc téarmaí comhchosúla in: x^{2}-1+x^{3}+x^{2}-x^{2}-x.
\frac{\left(x-1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)x^{3}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}.
\frac{x+1}{x^{3}}
Cealaigh \left(x-1\right)\left(x+1\right) mar uimhreoir agus ainmneoir.
\left(\frac{1}{\left(x-1\right)x^{3}}-\frac{1}{\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Fachtóirigh x^{4}-x^{3}. Fachtóirigh x^{4}+x^{3}.
\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}}-\frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)x^{3} agus \left(x+1\right)x^{3} ná \left(x-1\right)\left(x+1\right)x^{3}. Méadaigh \frac{1}{\left(x-1\right)x^{3}} faoi \frac{x+1}{x+1}. Méadaigh \frac{1}{\left(x+1\right)x^{3}} faoi \frac{x-1}{x-1}.
\frac{x+1-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Tá an t-ainmneoir céanna ag \frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}} agus \frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x+1-x+1}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Déan iolrúcháin in x+1-\left(x-1\right).
\frac{2}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}
Cumaisc téarmaí comhchosúla in: x+1-x+1.
\frac{2\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}\times 2}+\frac{1}{x^{2}}
Méadaigh \frac{2}{\left(x-1\right)\left(x+1\right)x^{3}} faoi \frac{x^{2}-1}{2} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{1}{x^{2}}
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-1\right)\left(x+1\right)x^{3} agus x^{2} ná \left(x-1\right)\left(x+1\right)x^{3}. Méadaigh \frac{1}{x^{2}} faoi \frac{x\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}.
\frac{x^{2}-1+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}
Tá an t-ainmneoir céanna ag \frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}} agus \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{2}-1+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)x^{3}}
Déan iolrúcháin in x^{2}-1+x\left(x-1\right)\left(x+1\right).
\frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}
Cumaisc téarmaí comhchosúla in: x^{2}-1+x^{3}+x^{2}-x^{2}-x.
\frac{\left(x-1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)x^{3}}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}.
\frac{x+1}{x^{3}}
Cealaigh \left(x-1\right)\left(x+1\right) mar uimhreoir agus ainmneoir.