Luacháil
\frac{1}{x+1}
Fairsingigh
\frac{1}{x+1}
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
( \frac { 1 } { x + 1 } - \frac { 1 } { x - 1 } ) \div \frac { 2 } { 1 - x }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x-1 ná \left(x-1\right)\left(x+1\right). Méadaigh \frac{1}{x+1} faoi \frac{x-1}{x-1}. Méadaigh \frac{1}{x-1} faoi \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Tá an t-ainmneoir céanna ag \frac{x-1}{\left(x-1\right)\left(x+1\right)} agus \frac{x+1}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Déan iolrúcháin in x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Cumaisc téarmaí comhchosúla in: x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Roinn \frac{-2}{\left(x-1\right)\left(x+1\right)} faoi \frac{2}{1-x} trí \frac{-2}{\left(x-1\right)\left(x+1\right)} a mhéadú faoi dheilín \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Bain an comhartha diúltach in: 1-x.
\frac{-\left(-1\right)}{x+1}
Cealaigh 2\left(x-1\right) mar uimhreoir agus ainmneoir.
\frac{1}{x+1}
Méadaigh -1 agus -1 chun 1 a fháil.
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x-1 ná \left(x-1\right)\left(x+1\right). Méadaigh \frac{1}{x+1} faoi \frac{x-1}{x-1}. Méadaigh \frac{1}{x-1} faoi \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Tá an t-ainmneoir céanna ag \frac{x-1}{\left(x-1\right)\left(x+1\right)} agus \frac{x+1}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Déan iolrúcháin in x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Cumaisc téarmaí comhchosúla in: x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Roinn \frac{-2}{\left(x-1\right)\left(x+1\right)} faoi \frac{2}{1-x} trí \frac{-2}{\left(x-1\right)\left(x+1\right)} a mhéadú faoi dheilín \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Bain an comhartha diúltach in: 1-x.
\frac{-\left(-1\right)}{x+1}
Cealaigh 2\left(x-1\right) mar uimhreoir agus ainmneoir.
\frac{1}{x+1}
Méadaigh -1 agus -1 chun 1 a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}