Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x-1 ná \left(x-1\right)\left(x+1\right). Méadaigh \frac{1}{x+1} faoi \frac{x-1}{x-1}. Méadaigh \frac{1}{x-1} faoi \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Tá an t-ainmneoir céanna ag \frac{x-1}{\left(x-1\right)\left(x+1\right)} agus \frac{x+1}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Déan iolrúcháin in x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Cumaisc téarmaí comhchosúla in: x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Roinn \frac{-2}{\left(x-1\right)\left(x+1\right)} faoi \frac{2}{1-x} trí \frac{-2}{\left(x-1\right)\left(x+1\right)} a mhéadú faoi dheilín \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Bain an comhartha diúltach in: 1-x.
\frac{-\left(-1\right)}{x+1}
Cealaigh 2\left(x-1\right) mar uimhreoir agus ainmneoir.
\frac{1}{x+1}
Méadaigh -1 agus -1 chun 1 a fháil.
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x-1 ná \left(x-1\right)\left(x+1\right). Méadaigh \frac{1}{x+1} faoi \frac{x-1}{x-1}. Méadaigh \frac{1}{x-1} faoi \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Tá an t-ainmneoir céanna ag \frac{x-1}{\left(x-1\right)\left(x+1\right)} agus \frac{x+1}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Déan iolrúcháin in x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Cumaisc téarmaí comhchosúla in: x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Roinn \frac{-2}{\left(x-1\right)\left(x+1\right)} faoi \frac{2}{1-x} trí \frac{-2}{\left(x-1\right)\left(x+1\right)} a mhéadú faoi dheilín \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Bain an comhartha diúltach in: 1-x.
\frac{-\left(-1\right)}{x+1}
Cealaigh 2\left(x-1\right) mar uimhreoir agus ainmneoir.
\frac{1}{x+1}
Méadaigh -1 agus -1 chun 1 a fháil.