Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 1-x agus 1+x ná \left(x+1\right)\left(-x+1\right). Méadaigh \frac{1}{1-x} faoi \frac{x+1}{x+1}. Méadaigh \frac{1}{1+x} faoi \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Tá an t-ainmneoir céanna ag \frac{x+1}{\left(x+1\right)\left(-x+1\right)} agus \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Déan iolrúcháin in x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Cumaisc téarmaí comhchosúla in: x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Fachtóirigh x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh x faoi \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Tá an t-ainmneoir céanna ag \frac{x}{\left(x-1\right)\left(x+1\right)} agus \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Déan iolrúcháin in x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Cumaisc téarmaí comhchosúla in: x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Roinn \frac{2x}{\left(x+1\right)\left(-x+1\right)} faoi \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} trí \frac{2x}{\left(x+1\right)\left(-x+1\right)} a mhéadú faoi dheilín \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Bain an comhartha diúltach in: x-1.
\frac{-2}{x^{2}}
Cealaigh x\left(x+1\right)\left(-x+1\right) mar uimhreoir agus ainmneoir.
\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 1-x agus 1+x ná \left(x+1\right)\left(-x+1\right). Méadaigh \frac{1}{1-x} faoi \frac{x+1}{x+1}. Méadaigh \frac{1}{1+x} faoi \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Tá an t-ainmneoir céanna ag \frac{x+1}{\left(x+1\right)\left(-x+1\right)} agus \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Déan iolrúcháin in x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Cumaisc téarmaí comhchosúla in: x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Fachtóirigh x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh x faoi \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Tá an t-ainmneoir céanna ag \frac{x}{\left(x-1\right)\left(x+1\right)} agus \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Déan iolrúcháin in x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Cumaisc téarmaí comhchosúla in: x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Roinn \frac{2x}{\left(x+1\right)\left(-x+1\right)} faoi \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} trí \frac{2x}{\left(x+1\right)\left(-x+1\right)} a mhéadú faoi dheilín \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Bain an comhartha diúltach in: x-1.
\frac{-2}{x^{2}}
Cealaigh x\left(x+1\right)\left(-x+1\right) mar uimhreoir agus ainmneoir.