Luacháil
\frac{1}{16r^{2}}
Difreálaigh w.r.t. r
-\frac{1}{8r^{3}}
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
( \frac { - r ^ { 4 } } { 64 r ^ { 7 } } ) ^ { \frac { 2 } { 3 } }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{\left(64r^{7}\right)^{\frac{2}{3}}}
Chun \frac{-r^{4}}{64r^{7}} a iolrú i gcumhacht, iolraigh an t-uimhreoir agus an t-ainmneoir araon i gcumhacht agus déan iad a roinnt ansin.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}\left(r^{7}\right)^{\frac{2}{3}}}
Fairsingigh \left(64r^{7}\right)^{\frac{2}{3}}
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}r^{\frac{14}{3}}}
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 7 agus \frac{2}{3} chun \frac{14}{3} a bhaint amach.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
Ríomh cumhacht 64 de \frac{2}{3} agus faigh 16.
\frac{\left(-1\right)^{\frac{2}{3}}\left(r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
Fairsingigh \left(-r^{4}\right)^{\frac{2}{3}}
\frac{\left(-1\right)^{\frac{2}{3}}r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 4 agus \frac{2}{3} chun \frac{8}{3} a bhaint amach.
\frac{1r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
Ríomh cumhacht -1 de \frac{2}{3} agus faigh 1.
\frac{1}{16r^{2}}
Cealaigh r^{\frac{8}{3}} mar uimhreoir agus ainmneoir.
\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{-r^{4}}{64r^{7}})
Más F comhshuíomh dhá fheidhm indifreáilte f\left(u\right) agus u=g\left(x\right), is é sin, más F\left(x\right)=f\left(g\left(x\right)\right), mar sin is ionann díorthach F agus díorthach f maidir le u méadaithe faoi dhíorthach g maidir le x, is é sin, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\frac{\mathrm{d}}{\mathrm{d}r}(-r^{4})-\left(-r^{4}\frac{\mathrm{d}}{\mathrm{d}r}(64r^{7})\right)\right)}{\left(64r^{7}\right)^{2}}
Do dhá fheidhm indifreáilte ar bith, is ionann díorthach líon an dá fheidhme agus an t-ainmneoir méadaithe faoi dhíorthach an uimhreora lúide an t-uimhreoir méadaithe faoi dhíorthach an ainmneora, agus iad ar fad roinnte faoin ainmneoir cearnaithe.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\times 4\left(-1\right)r^{4-1}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{7}r^{3}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
Méadaigh 64r^{7} faoi 4\left(-1\right)r^{4-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{4}r^{6}\right)\right)}{\left(64r^{7}\right)^{2}}
Méadaigh -r^{4} faoi 7\times 64r^{7-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{10}\right)\right)}{\left(64r^{7}\right)^{2}}
Simpligh.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}