Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2}+18 chun ainmneoir \frac{\sqrt{2}}{\sqrt{2}-18} a thiontú in uimhir chóimheasta.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Mar shampla \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Cearnóg \sqrt{2}. Cearnóg 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Dealaigh 324 ó 2 chun -322 a fháil.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Chun \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} a iolrú i gcumhacht, iolraigh an t-uimhreoir agus an t-ainmneoir araon i gcumhacht agus déan iad a roinnt ansin.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Fairsingigh \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(\sqrt{2}+18\right)^{2} a leathnú.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Suimigh 2 agus 324 chun 326 a fháil.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Ríomh cumhacht -322 de 2 agus faigh 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Roinn 2\left(326+36\sqrt{2}\right) faoi 103684 chun \frac{1}{51842}\left(326+36\sqrt{2}\right) a fháil.
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Úsáid an t-airí dáileach chun \frac{1}{51842} a mhéadú faoi 326+36\sqrt{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2}+18 chun ainmneoir \frac{\sqrt{2}}{\sqrt{2}-18} a thiontú in uimhir chóimheasta.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Mar shampla \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Cearnóg \sqrt{2}. Cearnóg 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Dealaigh 324 ó 2 chun -322 a fháil.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Chun \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} a iolrú i gcumhacht, iolraigh an t-uimhreoir agus an t-ainmneoir araon i gcumhacht agus déan iad a roinnt ansin.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Fairsingigh \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(\sqrt{2}+18\right)^{2} a leathnú.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Suimigh 2 agus 324 chun 326 a fháil.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Ríomh cumhacht -322 de 2 agus faigh 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Roinn 2\left(326+36\sqrt{2}\right) faoi 103684 chun \frac{1}{51842}\left(326+36\sqrt{2}\right) a fháil.
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Úsáid an t-airí dáileach chun \frac{1}{51842} a mhéadú faoi 326+36\sqrt{2}.