Réitigh do x. (complex solution)
x\in \sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}},\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
Graf
Tráth na gCeist
Quadratic Equation
5 fadhbanna cosúil le:
{ x }^{ 6 } =((6 { x }^{ 3 } )- { 5 }^{ 3 } )
Roinn
Cóipeáladh go dtí an ghearrthaisce
x^{6}=6x^{3}-125
Ríomh cumhacht 5 de 3 agus faigh 125.
x^{6}-6x^{3}=-125
Bain 6x^{3} ón dá thaobh.
x^{6}-6x^{3}+125=0
Cuir 125 leis an dá thaobh.
t^{2}-6t+125=0
Cuir t in ionad x^{3}.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 125}}{2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir 1 in ionad a, -6 in ionad b agus 125 in ionad c san fhoirmle chearnach.
t=\frac{6±\sqrt{-464}}{2}
Déan áirimh.
t=3+2\sqrt{29}i t=-2\sqrt{29}i+3
Réitigh an chothromóid t=\frac{6±\sqrt{-464}}{2} nuair is ionann ± agus luach deimhneach agus ± agus luach diúltach.
x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
x=t^{3} agus sin an fáth go dtagtar ar na réitigh tríd an gcothromóid a réiteach do gach t.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}