Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x^{2}-x-6=0
Bain 6 ón dá thaobh.
a+b=-1 ab=-6
Chun an chothromóid a réiteach, úsáid an fhoirmle x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) chun x^{2}-x-6 a fhachtóiriú. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,-6 2,-3
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -6.
1-6=-5 2-3=-1
Áirigh an tsuim do gach péire.
a=-3 b=2
Is é an réiteach ná an péire a thugann an tsuim -1.
\left(x-3\right)\left(x+2\right)
Úsáid na luachanna atá ar eolas chun an slonn fachtóirithe \left(x+a\right)\left(x+b\right) a athscríobh.
x=3 x=-2
Réitigh x-3=0 agus x+2=0 chun réitigh cothromóide a fháil.
x^{2}-x-6=0
Bain 6 ón dá thaobh.
a+b=-1 ab=1\left(-6\right)=-6
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar x^{2}+ax+bx-6 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,-6 2,-3
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -6.
1-6=-5 2-3=-1
Áirigh an tsuim do gach péire.
a=-3 b=2
Is é an réiteach ná an péire a thugann an tsuim -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Athscríobh x^{2}-x-6 mar \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Fág x as an áireamh sa chead ghrúpa agus 2 sa dara grúpa.
\left(x-3\right)\left(x+2\right)
Fág an téarma coitianta x-3 as an áireamh ag úsáid airí dháiligh.
x=3 x=-2
Réitigh x-3=0 agus x+2=0 chun réitigh cothromóide a fháil.
x^{2}-x=6
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x^{2}-x-6=6-6
Bain 6 ón dá thaobh den chothromóid.
x^{2}-x-6=0
Má dhealaítear 6 uaidh féin faightear 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, -1 in ionad b, agus -6 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Méadaigh -4 faoi -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Suimigh 1 le 24?
x=\frac{-\left(-1\right)±5}{2}
Tóg fréamh chearnach 25.
x=\frac{1±5}{2}
Tá 1 urchomhairleach le -1.
x=\frac{6}{2}
Réitigh an chothromóid x=\frac{1±5}{2} nuair is ionann ± agus plus. Suimigh 1 le 5?
x=3
Roinn 6 faoi 2.
x=-\frac{4}{2}
Réitigh an chothromóid x=\frac{1±5}{2} nuair is ionann ± agus míneas. Dealaigh 5 ó 1.
x=-2
Roinn -4 faoi 2.
x=3 x=-2
Tá an chothromóid réitithe anois.
x^{2}-x=6
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Roinn -1, comhéifeacht an téarma x, faoi 2 chun -\frac{1}{2} a fháil. Ansin suimigh uimhir chearnach -\frac{1}{2} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Cearnaigh -\frac{1}{2} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Suimigh 6 le \frac{1}{4}?
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Fachtóirigh x^{2}-x+\frac{1}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Simpligh.
x=3 x=-2
Cuir \frac{1}{2} leis an dá thaobh den chothromóid.