Luacháil
\sqrt{10}\approx 3.16227766
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(\sqrt{2}+\sqrt{5}\right)^{2} a leathnú.
2+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Is é 2 uimhir chearnach \sqrt{2}.
2+2\sqrt{10}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{2} agus \sqrt{5} a iolrú.
2+2\sqrt{10}+5-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Is é 5 uimhir chearnach \sqrt{5}.
7+2\sqrt{10}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Suimigh 2 agus 5 chun 7 a fháil.
7+2\sqrt{10}-\left(4+4\sqrt{10}+\left(\sqrt{10}\right)^{2}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(2+\sqrt{10}\right)^{2} a leathnú.
7+2\sqrt{10}-\left(4+4\sqrt{10}+10\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Is é 10 uimhir chearnach \sqrt{10}.
7+2\sqrt{10}-\left(14+4\sqrt{10}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Suimigh 4 agus 10 chun 14 a fháil.
7+2\sqrt{10}-14-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Chun an mhalairt ar 14+4\sqrt{10} a aimsiú, aimsigh an mhalairt ar gach téarma.
-7+2\sqrt{10}-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Dealaigh 14 ó 7 chun -7 a fháil.
-7-2\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Comhcheangail 2\sqrt{10} agus -4\sqrt{10} chun -2\sqrt{10} a fháil.
-7-2\sqrt{10}+3\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Fachtóirigh 90=3^{2}\times 10. Athscríobh fréamh cearnach an toraidh \sqrt{3^{2}\times 10} mar thoradh na bhfréamhacha cearnacha \sqrt{3^{2}}\sqrt{10}. Tóg fréamh chearnach 3^{2}.
-7+\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Comhcheangail -2\sqrt{10} agus 3\sqrt{10} chun \sqrt{10} a fháil.
-7+\sqrt{10}+\left(2\sqrt{2}\right)^{2}-1
Mar shampla \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Cearnóg 1.
-7+\sqrt{10}+2^{2}\left(\sqrt{2}\right)^{2}-1
Fairsingigh \left(2\sqrt{2}\right)^{2}
-7+\sqrt{10}+4\left(\sqrt{2}\right)^{2}-1
Ríomh cumhacht 2 de 2 agus faigh 4.
-7+\sqrt{10}+4\times 2-1
Is é 2 uimhir chearnach \sqrt{2}.
-7+\sqrt{10}+8-1
Méadaigh 4 agus 2 chun 8 a fháil.
-7+\sqrt{10}+7
Dealaigh 1 ó 8 chun 7 a fháil.
\sqrt{10}
Suimigh -7 agus 7 chun 0 a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}