Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image

Roinn

\left(\frac{1}{2}\right)^{2}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Faigh luach do\sin(30)ón dtábla luachanna triantánúla.
\frac{1}{4}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Ríomh cumhacht \frac{1}{2} de 2 agus faigh \frac{1}{4}.
\frac{1}{4}\times \left(\frac{\sqrt{2}}{2}\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Faigh luach do\cos(45)ón dtábla luachanna triantánúla.
\frac{1}{4}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Chun \frac{\sqrt{2}}{2} a iolrú i gcumhacht, iolraigh an t-uimhreoir agus an t-ainmneoir araon i gcumhacht agus déan iad a roinnt ansin.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Méadaigh \frac{1}{4} faoi \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \left(\frac{\sqrt{3}}{3}\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Faigh luach do\tan(30)ón dtábla luachanna triantánúla.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Chun \frac{\sqrt{3}}{3} a iolrú i gcumhacht, iolraigh an t-uimhreoir agus an t-ainmneoir araon i gcumhacht agus déan iad a roinnt ansin.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Scríobh 4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} mar chodán aonair.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Faigh luach do\sin(90)ón dtábla luachanna triantánúla.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Ríomh cumhacht 1 de 2 agus faigh 1.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Méadaigh \frac{1}{2} agus 1 chun \frac{1}{2} a fháil.
\frac{9\left(\sqrt{2}\right)^{2}}{144}+\frac{16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 4\times 2^{2} agus 3^{2} ná 144. Méadaigh \frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}} faoi \frac{9}{9}. Méadaigh \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} faoi \frac{16}{16}.
\frac{9\left(\sqrt{2}\right)^{2}+16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Tá an t-ainmneoir céanna ag \frac{9\left(\sqrt{2}\right)^{2}}{144} agus \frac{16\times 4\left(\sqrt{3}\right)^{2}}{144} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\left(\sqrt{2}\right)^{2}}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{8}{16}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 4\times 2^{2} agus 2 ná 16. Méadaigh \frac{1}{2} faoi \frac{8}{8}.
\frac{\left(\sqrt{2}\right)^{2}+8}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Tá an t-ainmneoir céanna ag \frac{\left(\sqrt{2}\right)^{2}}{16} agus \frac{8}{16} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}}{18}+\frac{9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 3^{2} agus 2 ná 18. Méadaigh \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} faoi \frac{2}{2}. Méadaigh \frac{1}{2} faoi \frac{9}{9}.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Tá an t-ainmneoir céanna ag \frac{2\times 4\left(\sqrt{3}\right)^{2}}{18} agus \frac{9}{18} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Faigh luach do\cos(90)ón dtábla luachanna triantánúla.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0+\frac{1}{24}\left(\cos(0)\right)^{2}
Ríomh cumhacht 0 de 2 agus faigh 0.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\left(\cos(0)\right)^{2}
Méadaigh 2 agus 0 chun 0 a fháil.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1^{2}
Faigh luach do\cos(0)ón dtábla luachanna triantánúla.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1
Ríomh cumhacht 1 de 2 agus faigh 1.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Méadaigh \frac{1}{24} agus 1 chun \frac{1}{24} a fháil.
\frac{2}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{2}{4\times 4}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{2}{16}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Méadaigh 4 agus 4 chun 16 a fháil.
\frac{1}{8}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Laghdaigh an codán \frac{2}{16} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
\frac{1}{8}+\frac{8\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Méadaigh 2 agus 4 chun 8 a fháil.
\frac{1}{8}+\frac{8\times 3+9}{18}-0+\frac{1}{24}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{1}{8}+\frac{24+9}{18}-0+\frac{1}{24}
Méadaigh 8 agus 3 chun 24 a fháil.
\frac{1}{8}+\frac{33}{18}-0+\frac{1}{24}
Suimigh 24 agus 9 chun 33 a fháil.
\frac{1}{8}+\frac{11}{6}-0+\frac{1}{24}
Laghdaigh an codán \frac{33}{18} chuig na téarmaí is ísle trí 3 a bhaint agus a chealú.
\frac{47}{24}-0+\frac{1}{24}
Suimigh \frac{1}{8} agus \frac{11}{6} chun \frac{47}{24} a fháil.
\frac{47}{24}+\frac{1}{24}
Dealaigh 0 ó \frac{47}{24} chun \frac{47}{24} a fháil.
2
Suimigh \frac{47}{24} agus \frac{1}{24} chun 2 a fháil.