\sqrt{ 6 \left( 1+ \frac{ 1 }{ { 2 }^{ 2 } } + \frac{ 1 }{ { 3 }^{ 2 } } + \frac{ 1 }{ { 4 }^{ 2 } } + \frac{ 1 }{ { 5 }^{ 2 } } + \frac{ 1 }{ { 6 }^{ 2 } } + \frac{ 1 }{ { 7 }^{ 2 } } + \frac{ 1 }{ { 8 }^{ 2 } } + \frac{ 1 }{ { 9 }^{ 2 } } + \frac{ 1 }{ { 10 }^{ 2 } } + \frac{ 1 }{ { 11 }^{ 2 } } + \frac{ 1 }{ { 12 }^{ 2 } } + \frac{ 1 }{ { 13 }^{ 2 } } + \frac{ 1 }{ { 14 }^{ 2 } } + \frac{ 1 }{ { 15 }^{ 2 } } + \frac{ 1 }{ { 16 }^{ 2 } } + \frac{ 1 }{ { 17 }^{ 2 } } + \frac{ 1 }{ { 18 }^{ 2 } } + \frac{ 1 }{ { 19 }^{ 2 } } + \frac{ 1 }{ { 20 }^{ 2 } } + \frac{ 1 }{ { 21 }^{ 2 } } \right) }
Luacháil
\frac{\sqrt{10606869044576670}}{33256080}\approx 3.09686695
Roinn
Cóipeáladh go dtí an ghearrthaisce
\sqrt{6\left(1+\frac{1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 2 de 2 agus faigh 4.
\sqrt{6\left(\frac{4}{4}+\frac{1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Coinbhéartaigh 1 i gcodán \frac{4}{4}.
\sqrt{6\left(\frac{4+1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{4}{4} agus \frac{1}{4} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{5}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 4 agus 1 chun 5 a fháil.
\sqrt{6\left(\frac{5}{4}+\frac{1}{9}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 3 de 2 agus faigh 9.
\sqrt{6\left(\frac{45}{36}+\frac{4}{36}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 4 agus 9 ná 36. Coinbhéartaigh \frac{5}{4} agus \frac{1}{9} chuig codáin a bhfuil an t-ainmneoir 36 acu.
\sqrt{6\left(\frac{45+4}{36}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{45}{36} agus \frac{4}{36} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{49}{36}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 45 agus 4 chun 49 a fháil.
\sqrt{6\left(\frac{49}{36}+\frac{1}{16}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 4 de 2 agus faigh 16.
\sqrt{6\left(\frac{196}{144}+\frac{9}{144}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 36 agus 16 ná 144. Coinbhéartaigh \frac{49}{36} agus \frac{1}{16} chuig codáin a bhfuil an t-ainmneoir 144 acu.
\sqrt{6\left(\frac{196+9}{144}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{196}{144} agus \frac{9}{144} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{205}{144}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 196 agus 9 chun 205 a fháil.
\sqrt{6\left(\frac{205}{144}+\frac{1}{25}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 5 de 2 agus faigh 25.
\sqrt{6\left(\frac{5125}{3600}+\frac{144}{3600}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 144 agus 25 ná 3600. Coinbhéartaigh \frac{205}{144} agus \frac{1}{25} chuig codáin a bhfuil an t-ainmneoir 3600 acu.
\sqrt{6\left(\frac{5125+144}{3600}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{5125}{3600} agus \frac{144}{3600} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{5269}{3600}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 5125 agus 144 chun 5269 a fháil.
\sqrt{6\left(\frac{5269}{3600}+\frac{1}{36}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 6 de 2 agus faigh 36.
\sqrt{6\left(\frac{5269}{3600}+\frac{100}{3600}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 3600 agus 36 ná 3600. Coinbhéartaigh \frac{5269}{3600} agus \frac{1}{36} chuig codáin a bhfuil an t-ainmneoir 3600 acu.
\sqrt{6\left(\frac{5269+100}{3600}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{5269}{3600} agus \frac{100}{3600} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{5369}{3600}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 5269 agus 100 chun 5369 a fháil.
\sqrt{6\left(\frac{5369}{3600}+\frac{1}{49}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 7 de 2 agus faigh 49.
\sqrt{6\left(\frac{263081}{176400}+\frac{3600}{176400}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 3600 agus 49 ná 176400. Coinbhéartaigh \frac{5369}{3600} agus \frac{1}{49} chuig codáin a bhfuil an t-ainmneoir 176400 acu.
\sqrt{6\left(\frac{263081+3600}{176400}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{263081}{176400} agus \frac{3600}{176400} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{266681}{176400}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 263081 agus 3600 chun 266681 a fháil.
\sqrt{6\left(\frac{266681}{176400}+\frac{1}{64}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 8 de 2 agus faigh 64.
\sqrt{6\left(\frac{1066724}{705600}+\frac{11025}{705600}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 176400 agus 64 ná 705600. Coinbhéartaigh \frac{266681}{176400} agus \frac{1}{64} chuig codáin a bhfuil an t-ainmneoir 705600 acu.
\sqrt{6\left(\frac{1066724+11025}{705600}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{1066724}{705600} agus \frac{11025}{705600} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{1077749}{705600}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 1066724 agus 11025 chun 1077749 a fháil.
\sqrt{6\left(\frac{1077749}{705600}+\frac{1}{81}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 9 de 2 agus faigh 81.
\sqrt{6\left(\frac{9699741}{6350400}+\frac{78400}{6350400}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 705600 agus 81 ná 6350400. Coinbhéartaigh \frac{1077749}{705600} agus \frac{1}{81} chuig codáin a bhfuil an t-ainmneoir 6350400 acu.
\sqrt{6\left(\frac{9699741+78400}{6350400}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{9699741}{6350400} agus \frac{78400}{6350400} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{9778141}{6350400}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 9699741 agus 78400 chun 9778141 a fháil.
\sqrt{6\left(\frac{9778141}{6350400}+\frac{1}{100}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 10 de 2 agus faigh 100.
\sqrt{6\left(\frac{9778141}{6350400}+\frac{63504}{6350400}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 6350400 agus 100 ná 6350400. Coinbhéartaigh \frac{9778141}{6350400} agus \frac{1}{100} chuig codáin a bhfuil an t-ainmneoir 6350400 acu.
\sqrt{6\left(\frac{9778141+63504}{6350400}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{9778141}{6350400} agus \frac{63504}{6350400} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{9841645}{6350400}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 9778141 agus 63504 chun 9841645 a fháil.
\sqrt{6\left(\frac{1968329}{1270080}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Laghdaigh an codán \frac{9841645}{6350400} chuig na téarmaí is ísle trí 5 a bhaint agus a chealú.
\sqrt{6\left(\frac{1968329}{1270080}+\frac{1}{121}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 11 de 2 agus faigh 121.
\sqrt{6\left(\frac{238167809}{153679680}+\frac{1270080}{153679680}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 1270080 agus 121 ná 153679680. Coinbhéartaigh \frac{1968329}{1270080} agus \frac{1}{121} chuig codáin a bhfuil an t-ainmneoir 153679680 acu.
\sqrt{6\left(\frac{238167809+1270080}{153679680}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{238167809}{153679680} agus \frac{1270080}{153679680} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{239437889}{153679680}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 238167809 agus 1270080 chun 239437889 a fháil.
\sqrt{6\left(\frac{239437889}{153679680}+\frac{1}{144}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 12 de 2 agus faigh 144.
\sqrt{6\left(\frac{239437889}{153679680}+\frac{1067220}{153679680}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 153679680 agus 144 ná 153679680. Coinbhéartaigh \frac{239437889}{153679680} agus \frac{1}{144} chuig codáin a bhfuil an t-ainmneoir 153679680 acu.
\sqrt{6\left(\frac{239437889+1067220}{153679680}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{239437889}{153679680} agus \frac{1067220}{153679680} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{240505109}{153679680}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 239437889 agus 1067220 chun 240505109 a fháil.
\sqrt{6\left(\frac{240505109}{153679680}+\frac{1}{169}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 13 de 2 agus faigh 169.
\sqrt{6\left(\frac{40645363421}{25971865920}+\frac{153679680}{25971865920}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 153679680 agus 169 ná 25971865920. Coinbhéartaigh \frac{240505109}{153679680} agus \frac{1}{169} chuig codáin a bhfuil an t-ainmneoir 25971865920 acu.
\sqrt{6\left(\frac{40645363421+153679680}{25971865920}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{40645363421}{25971865920} agus \frac{153679680}{25971865920} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{40799043101}{25971865920}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 40645363421 agus 153679680 chun 40799043101 a fháil.
\sqrt{6\left(\frac{40799043101}{25971865920}+\frac{1}{196}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 14 de 2 agus faigh 196.
\sqrt{6\left(\frac{40799043101}{25971865920}+\frac{132509520}{25971865920}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 25971865920 agus 196 ná 25971865920. Coinbhéartaigh \frac{40799043101}{25971865920} agus \frac{1}{196} chuig codáin a bhfuil an t-ainmneoir 25971865920 acu.
\sqrt{6\left(\frac{40799043101+132509520}{25971865920}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{40799043101}{25971865920} agus \frac{132509520}{25971865920} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{40931552621}{25971865920}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 40799043101 agus 132509520 chun 40931552621 a fháil.
\sqrt{6\left(\frac{40931552621}{25971865920}+\frac{1}{225}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 15 de 2 agus faigh 225.
\sqrt{6\left(\frac{204657763105}{129859329600}+\frac{577152576}{129859329600}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 25971865920 agus 225 ná 129859329600. Coinbhéartaigh \frac{40931552621}{25971865920} agus \frac{1}{225} chuig codáin a bhfuil an t-ainmneoir 129859329600 acu.
\sqrt{6\left(\frac{204657763105+577152576}{129859329600}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{204657763105}{129859329600} agus \frac{577152576}{129859329600} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{205234915681}{129859329600}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 204657763105 agus 577152576 chun 205234915681 a fháil.
\sqrt{6\left(\frac{205234915681}{129859329600}+\frac{1}{256}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 16 de 2 agus faigh 256.
\sqrt{6\left(\frac{820939662724}{519437318400}+\frac{2029052025}{519437318400}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 129859329600 agus 256 ná 519437318400. Coinbhéartaigh \frac{205234915681}{129859329600} agus \frac{1}{256} chuig codáin a bhfuil an t-ainmneoir 519437318400 acu.
\sqrt{6\left(\frac{820939662724+2029052025}{519437318400}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{820939662724}{519437318400} agus \frac{2029052025}{519437318400} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{822968714749}{519437318400}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 820939662724 agus 2029052025 chun 822968714749 a fháil.
\sqrt{6\left(\frac{822968714749}{519437318400}+\frac{1}{289}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 17 de 2 agus faigh 289.
\sqrt{6\left(\frac{237837958562461}{150117385017600}+\frac{519437318400}{150117385017600}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 519437318400 agus 289 ná 150117385017600. Coinbhéartaigh \frac{822968714749}{519437318400} agus \frac{1}{289} chuig codáin a bhfuil an t-ainmneoir 150117385017600 acu.
\sqrt{6\left(\frac{237837958562461+519437318400}{150117385017600}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{237837958562461}{150117385017600} agus \frac{519437318400}{150117385017600} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{238357395880861}{150117385017600}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 237837958562461 agus 519437318400 chun 238357395880861 a fháil.
\sqrt{6\left(\frac{238357395880861}{150117385017600}+\frac{1}{324}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 18 de 2 agus faigh 324.
\sqrt{6\left(\frac{238357395880861}{150117385017600}+\frac{463325262400}{150117385017600}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 150117385017600 agus 324 ná 150117385017600. Coinbhéartaigh \frac{238357395880861}{150117385017600} agus \frac{1}{324} chuig codáin a bhfuil an t-ainmneoir 150117385017600 acu.
\sqrt{6\left(\frac{238357395880861+463325262400}{150117385017600}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{238357395880861}{150117385017600} agus \frac{463325262400}{150117385017600} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{238820721143261}{150117385017600}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 238357395880861 agus 463325262400 chun 238820721143261 a fháil.
\sqrt{6\left(\frac{238820721143261}{150117385017600}+\frac{1}{361}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 19 de 2 agus faigh 361.
\sqrt{6\left(\frac{86214280332717221}{54192375991353600}+\frac{150117385017600}{54192375991353600}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 150117385017600 agus 361 ná 54192375991353600. Coinbhéartaigh \frac{238820721143261}{150117385017600} agus \frac{1}{361} chuig codáin a bhfuil an t-ainmneoir 54192375991353600 acu.
\sqrt{6\left(\frac{86214280332717221+150117385017600}{54192375991353600}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{86214280332717221}{54192375991353600} agus \frac{150117385017600}{54192375991353600} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{86364397717734821}{54192375991353600}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
Suimigh 86214280332717221 agus 150117385017600 chun 86364397717734821 a fháil.
\sqrt{6\left(\frac{86364397717734821}{54192375991353600}+\frac{1}{400}+\frac{1}{21^{2}}\right)}
Ríomh cumhacht 20 de 2 agus faigh 400.
\sqrt{6\left(\frac{86364397717734821}{54192375991353600}+\frac{135480939978384}{54192375991353600}+\frac{1}{21^{2}}\right)}
Is é an t-iolrach is lú coitianta de 54192375991353600 agus 400 ná 54192375991353600. Coinbhéartaigh \frac{86364397717734821}{54192375991353600} agus \frac{1}{400} chuig codáin a bhfuil an t-ainmneoir 54192375991353600 acu.
\sqrt{6\left(\frac{86364397717734821+135480939978384}{54192375991353600}+\frac{1}{21^{2}}\right)}
Tá an t-ainmneoir céanna ag \frac{86364397717734821}{54192375991353600} agus \frac{135480939978384}{54192375991353600} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\left(\frac{86499878657713205}{54192375991353600}+\frac{1}{21^{2}}\right)}
Suimigh 86364397717734821 agus 135480939978384 chun 86499878657713205 a fháil.
\sqrt{6\left(\frac{17299975731542641}{10838475198270720}+\frac{1}{21^{2}}\right)}
Laghdaigh an codán \frac{86499878657713205}{54192375991353600} chuig na téarmaí is ísle trí 5 a bhaint agus a chealú.
\sqrt{6\left(\frac{17299975731542641}{10838475198270720}+\frac{1}{441}\right)}
Ríomh cumhacht 21 de 2 agus faigh 441.
\sqrt{6\left(\frac{17299975731542641}{10838475198270720}+\frac{24577041265920}{10838475198270720}\right)}
Is é an t-iolrach is lú coitianta de 10838475198270720 agus 441 ná 10838475198270720. Coinbhéartaigh \frac{17299975731542641}{10838475198270720} agus \frac{1}{441} chuig codáin a bhfuil an t-ainmneoir 10838475198270720 acu.
\sqrt{6\times \frac{17299975731542641+24577041265920}{10838475198270720}}
Tá an t-ainmneoir céanna ag \frac{17299975731542641}{10838475198270720} agus \frac{24577041265920}{10838475198270720} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\sqrt{6\times \frac{17324552772808561}{10838475198270720}}
Suimigh 17299975731542641 agus 24577041265920 chun 17324552772808561 a fháil.
\sqrt{6\times \frac{353562301485889}{221193371393280}}
Laghdaigh an codán \frac{17324552772808561}{10838475198270720} chuig na téarmaí is ísle trí 49 a bhaint agus a chealú.
\sqrt{\frac{6\times 353562301485889}{221193371393280}}
Scríobh 6\times \frac{353562301485889}{221193371393280} mar chodán aonair.
\sqrt{\frac{2121373808915334}{221193371393280}}
Méadaigh 6 agus 353562301485889 chun 2121373808915334 a fháil.
\sqrt{\frac{353562301485889}{36865561898880}}
Laghdaigh an codán \frac{2121373808915334}{221193371393280} chuig na téarmaí is ísle trí 6 a bhaint agus a chealú.
\frac{\sqrt{353562301485889}}{\sqrt{36865561898880}}
Athscríobh fréamh cearnach na roinnte \sqrt{\frac{353562301485889}{36865561898880}} mar roinnt na bhfréamhacha cearnacha \frac{\sqrt{353562301485889}}{\sqrt{36865561898880}}.
\frac{\sqrt{353562301485889}}{1108536\sqrt{30}}
Fachtóirigh 36865561898880=1108536^{2}\times 30. Athscríobh fréamh cearnach an toraidh \sqrt{1108536^{2}\times 30} mar thoradh na bhfréamhacha cearnacha \sqrt{1108536^{2}}\sqrt{30}. Tóg fréamh chearnach 1108536^{2}.
\frac{\sqrt{353562301485889}\sqrt{30}}{1108536\left(\sqrt{30}\right)^{2}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{30} chun ainmneoir \frac{\sqrt{353562301485889}}{1108536\sqrt{30}} a thiontú in uimhir chóimheasta.
\frac{\sqrt{353562301485889}\sqrt{30}}{1108536\times 30}
Is é 30 uimhir chearnach \sqrt{30}.
\frac{\sqrt{10606869044576670}}{1108536\times 30}
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{353562301485889} agus \sqrt{30} a iolrú.
\frac{\sqrt{10606869044576670}}{33256080}
Méadaigh 1108536 agus 30 chun 33256080 a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}