Réitigh do x.
x=\frac{-\sqrt{5513}y+67y+431-5\sqrt{5513}}{32}
Réitigh do y.
y=\frac{-\sqrt{5513}x-67x+3\sqrt{5513}+41}{32}
Graf
Tráth na gCeist
Linear Equation
5 fadhbanna cosúil le:
\sqrt{ 37 } \left( 10x+7y+5 \right) = - \sqrt{ 149 } \left( 6x-y-23 \right)
Roinn
Cóipeáladh go dtí an ghearrthaisce
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
Úsáid an t-airí dáileach chun \sqrt{37} a mhéadú faoi 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
Úsáid an t-airí dáileach chun -\sqrt{149} a mhéadú faoi 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
Méadaigh -1 agus -1 chun 1 a fháil.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
Méadaigh -23 agus -1 chun 23 a fháil.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}
Bain 6\left(-\sqrt{149}\right)x ón dá thaobh.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-1\right)\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
Méadaigh -1 agus 6 chun -6 a fháil.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
Méadaigh -6 agus -1 chun 6 a fháil.
10\sqrt{37}x+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y
Bain 7\sqrt{37}y ón dá thaobh.
10\sqrt{37}x+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Bain 5\sqrt{37} ón dá thaobh.
\left(10\sqrt{37}+6\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Comhcheangail na téarmaí ar fad ina bhfuil x.
\left(6\sqrt{149}+10\sqrt{37}\right)x=\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(6\sqrt{149}+10\sqrt{37}\right)x}{6\sqrt{149}+10\sqrt{37}}=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
Roinn an dá thaobh faoi 10\sqrt{37}+6\sqrt{149}.
x=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
Má roinntear é faoi 10\sqrt{37}+6\sqrt{149} cuirtear an iolrúchán faoi 10\sqrt{37}+6\sqrt{149} ar ceal.
x=\frac{\frac{3\sqrt{149}-5\sqrt{37}}{416}\left(\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}\right)}{2}
Roinn \sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37} faoi 10\sqrt{37}+6\sqrt{149}.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
Úsáid an t-airí dáileach chun \sqrt{37} a mhéadú faoi 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
Úsáid an t-airí dáileach chun -\sqrt{149} a mhéadú faoi 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
Méadaigh -1 agus -1 chun 1 a fháil.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
Méadaigh -23 agus -1 chun 23 a fháil.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=6\left(-\sqrt{149}\right)x+23\sqrt{149}
Bain \sqrt{149}y ón dá thaobh.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}
Méadaigh 6 agus -1 chun -6 a fháil.
7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x
Bain 10\sqrt{37}x ón dá thaobh.
7\sqrt{37}y-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Bain 5\sqrt{37} ón dá thaobh.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Comhcheangail na téarmaí ar fad ina bhfuil y.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(7\sqrt{37}-\sqrt{149}\right)y}{7\sqrt{37}-\sqrt{149}}=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
Roinn an dá thaobh faoi 7\sqrt{37}-\sqrt{149}.
y=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
Má roinntear é faoi 7\sqrt{37}-\sqrt{149} cuirtear an iolrúchán faoi 7\sqrt{37}-\sqrt{149} ar ceal.
y=\frac{\sqrt{149}+7\sqrt{37}}{1664}\left(-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}\right)
Roinn -6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37} faoi 7\sqrt{37}-\sqrt{149}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}