Scipeáil chuig an bpríomhábhar
Réitigh do X.
Tick mark Image
Réitigh do x.
Tick mark Image
Graf

Roinn

\sqrt{3} X - \frac{x - 4}{0.7265425280053608} = 164
Evaluate trigonometric functions in the problem
\sqrt{3}X-\left(\frac{x}{0.7265425280053608}+\frac{-4}{0.7265425280053608}\right)=164
Roinn x-4 faoi 0.7265425280053608 chun \frac{x}{0.7265425280053608}+\frac{-4}{0.7265425280053608} a fháil.
\sqrt{3}X-\left(\frac{x}{0.7265425280053608}+\frac{-40000000000000000}{7265425280053608}\right)=164
Fairsingigh \frac{-4}{0.7265425280053608} tríd an t-uimhreoir agus an t-ainmneoir araon a iolrú faoi 10000000000000000.
\sqrt{3}X-\left(\frac{x}{0.7265425280053608}-\frac{5000000000000000}{908178160006701}\right)=164
Laghdaigh an codán \frac{-40000000000000000}{7265425280053608} chuig na téarmaí is ísle trí 8 a bhaint agus a chealú.
\sqrt{3}X-\frac{x}{0.7265425280053608}+\frac{5000000000000000}{908178160006701}=164
Chun an mhalairt ar \frac{x}{0.7265425280053608}-\frac{5000000000000000}{908178160006701} a aimsiú, aimsigh an mhalairt ar gach téarma.
\sqrt{3}X+\frac{5000000000000000}{908178160006701}=164+\frac{x}{0.7265425280053608}
Cuir \frac{x}{0.7265425280053608} leis an dá thaobh.
\sqrt{3}X=164+\frac{x}{0.7265425280053608}-\frac{5000000000000000}{908178160006701}
Bain \frac{5000000000000000}{908178160006701} ón dá thaobh.
\sqrt{3}X=\frac{143941218241098964}{908178160006701}+\frac{x}{0.7265425280053608}
Dealaigh \frac{5000000000000000}{908178160006701} ó 164 chun \frac{143941218241098964}{908178160006701} a fháil.
\sqrt{3}X=\frac{1250000000000000x+143941218241098964}{908178160006701}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\sqrt{3}X}{\sqrt{3}}=\frac{1250000000000000x+143941218241098964}{908178160006701\sqrt{3}}
Roinn an dá thaobh faoi \sqrt{3}.
X=\frac{1250000000000000x+143941218241098964}{908178160006701\sqrt{3}}
Má roinntear é faoi \sqrt{3} cuirtear an iolrúchán faoi \sqrt{3} ar ceal.
X=\frac{4\sqrt{3}\left(312500000000000x+35985304560274741\right)}{2724534480020103}
Roinn \frac{143941218241098964+1250000000000000x}{908178160006701} faoi \sqrt{3}.