Réitigh do z.
z=-13
Tráth na gCeist
Algebra
\sqrt { - 6 z + 3 } + z = - 4
Roinn
Cóipeáladh go dtí an ghearrthaisce
\sqrt{-6z+3}=-4-z
Bain z ón dá thaobh den chothromóid.
\left(\sqrt{-6z+3}\right)^{2}=\left(-4-z\right)^{2}
Cearnaigh an dá thaobh den chothromóid.
-6z+3=\left(-4-z\right)^{2}
Ríomh cumhacht \sqrt{-6z+3} de 2 agus faigh -6z+3.
-6z+3=16+8z+z^{2}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(-4-z\right)^{2} a leathnú.
-6z+3-16=8z+z^{2}
Bain 16 ón dá thaobh.
-6z-13=8z+z^{2}
Dealaigh 16 ó 3 chun -13 a fháil.
-6z-13-8z=z^{2}
Bain 8z ón dá thaobh.
-14z-13=z^{2}
Comhcheangail -6z agus -8z chun -14z a fháil.
-14z-13-z^{2}=0
Bain z^{2} ón dá thaobh.
-z^{2}-14z-13=0
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=-14 ab=-\left(-13\right)=13
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar -z^{2}+az+bz-13 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
a=-1 b=-13
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil a agus b araon diúltach. Is é an péire sin réiteach an chórais.
\left(-z^{2}-z\right)+\left(-13z-13\right)
Athscríobh -z^{2}-14z-13 mar \left(-z^{2}-z\right)+\left(-13z-13\right).
z\left(-z-1\right)+13\left(-z-1\right)
Fág z as an áireamh sa chead ghrúpa agus 13 sa dara grúpa.
\left(-z-1\right)\left(z+13\right)
Fág an téarma coitianta -z-1 as an áireamh ag úsáid airí dháiligh.
z=-1 z=-13
Réitigh -z-1=0 agus z+13=0 chun réitigh cothromóide a fháil.
\sqrt{-6\left(-1\right)+3}-1=-4
Cuir -1 in ionad z sa chothromóid \sqrt{-6z+3}+z=-4.
2=-4
Simpligh. Níl an chothromóid comhlíonann luach z=-1 toisc nach bhfuil ag an taobh clé agus an taobh deas comharthaí os a chomhair.
\sqrt{-6\left(-13\right)+3}-13=-4
Cuir -13 in ionad z sa chothromóid \sqrt{-6z+3}+z=-4.
-4=-4
Simpligh. An luach z=-13 shásaíonn an gcothromóid.
z=-13
Ag an chothromóid \sqrt{3-6z}=-z-4 réiteach uathúil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}