Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Réitigh do y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\left(\sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Cearnaigh an dá thaobh den chothromóid.
\left(\sqrt{49-14x+x^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(7-x\right)^{2} a leathnú.
\left(\sqrt{49-14x+x^{2}+1-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(1-y\right)^{2} a leathnú.
\left(\sqrt{50-14x+x^{2}-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Suimigh 49 agus 1 chun 50 a fháil.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Ríomh cumhacht \sqrt{50-14x+x^{2}-2y+y^{2}} de 2 agus faigh 50-14x+x^{2}-2y+y^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+\left(5-y\right)^{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(3-x\right)^{2} a leathnú.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+25-10y+y^{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(5-y\right)^{2} a leathnú.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{34-6x+x^{2}-10y+y^{2}}\right)^{2}
Suimigh 9 agus 25 chun 34 a fháil.
50-14x+x^{2}-2y+y^{2}=34-6x+x^{2}-10y+y^{2}
Ríomh cumhacht \sqrt{34-6x+x^{2}-10y+y^{2}} de 2 agus faigh 34-6x+x^{2}-10y+y^{2}.
50-14x+x^{2}-2y+y^{2}+6x=34+x^{2}-10y+y^{2}
Cuir 6x leis an dá thaobh.
50-8x+x^{2}-2y+y^{2}=34+x^{2}-10y+y^{2}
Comhcheangail -14x agus 6x chun -8x a fháil.
50-8x+x^{2}-2y+y^{2}-x^{2}=34-10y+y^{2}
Bain x^{2} ón dá thaobh.
50-8x-2y+y^{2}=34-10y+y^{2}
Comhcheangail x^{2} agus -x^{2} chun 0 a fháil.
-8x-2y+y^{2}=34-10y+y^{2}-50
Bain 50 ón dá thaobh.
-8x-2y+y^{2}=-16-10y+y^{2}
Dealaigh 50 ó 34 chun -16 a fháil.
-8x+y^{2}=-16-10y+y^{2}+2y
Cuir 2y leis an dá thaobh.
-8x+y^{2}=-16-8y+y^{2}
Comhcheangail -10y agus 2y chun -8y a fháil.
-8x=-16-8y+y^{2}-y^{2}
Bain y^{2} ón dá thaobh.
-8x=-16-8y
Comhcheangail y^{2} agus -y^{2} chun 0 a fháil.
-8x=-8y-16
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{-8x}{-8}=\frac{-8y-16}{-8}
Roinn an dá thaobh faoi -8.
x=\frac{-8y-16}{-8}
Má roinntear é faoi -8 cuirtear an iolrúchán faoi -8 ar ceal.
x=y+2
Roinn -16-8y faoi -8.
\sqrt{\left(7-\left(y+2\right)\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-\left(y+2\right)\right)^{2}+\left(5-y\right)^{2}}
Cuir y+2 in ionad x sa chothromóid \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}.
\left(2y^{2}-12y+26\right)^{\frac{1}{2}}=\left(2y^{2}-12y+26\right)^{\frac{1}{2}}
Simpligh. An luach x=y+2 shásaíonn an gcothromóid.
x=y+2
Ag an chothromóid \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} réiteach uathúil.
\left(\sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Cearnaigh an dá thaobh den chothromóid.
\left(\sqrt{49-14x+x^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(7-x\right)^{2} a leathnú.
\left(\sqrt{49-14x+x^{2}+1-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(1-y\right)^{2} a leathnú.
\left(\sqrt{50-14x+x^{2}-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Suimigh 49 agus 1 chun 50 a fháil.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Ríomh cumhacht \sqrt{50-14x+x^{2}-2y+y^{2}} de 2 agus faigh 50-14x+x^{2}-2y+y^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+\left(5-y\right)^{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(3-x\right)^{2} a leathnú.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+25-10y+y^{2}}\right)^{2}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(5-y\right)^{2} a leathnú.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{34-6x+x^{2}-10y+y^{2}}\right)^{2}
Suimigh 9 agus 25 chun 34 a fháil.
50-14x+x^{2}-2y+y^{2}=34-6x+x^{2}-10y+y^{2}
Ríomh cumhacht \sqrt{34-6x+x^{2}-10y+y^{2}} de 2 agus faigh 34-6x+x^{2}-10y+y^{2}.
50-14x+x^{2}-2y+y^{2}+10y=34-6x+x^{2}+y^{2}
Cuir 10y leis an dá thaobh.
50-14x+x^{2}+8y+y^{2}=34-6x+x^{2}+y^{2}
Comhcheangail -2y agus 10y chun 8y a fháil.
50-14x+x^{2}+8y+y^{2}-y^{2}=34-6x+x^{2}
Bain y^{2} ón dá thaobh.
50-14x+x^{2}+8y=34-6x+x^{2}
Comhcheangail y^{2} agus -y^{2} chun 0 a fháil.
-14x+x^{2}+8y=34-6x+x^{2}-50
Bain 50 ón dá thaobh.
-14x+x^{2}+8y=-16-6x+x^{2}
Dealaigh 50 ó 34 chun -16 a fháil.
x^{2}+8y=-16-6x+x^{2}+14x
Cuir 14x leis an dá thaobh.
x^{2}+8y=-16+8x+x^{2}
Comhcheangail -6x agus 14x chun 8x a fháil.
8y=-16+8x+x^{2}-x^{2}
Bain x^{2} ón dá thaobh.
8y=-16+8x
Comhcheangail x^{2} agus -x^{2} chun 0 a fháil.
8y=8x-16
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{8y}{8}=\frac{8x-16}{8}
Roinn an dá thaobh faoi 8.
y=\frac{8x-16}{8}
Má roinntear é faoi 8 cuirtear an iolrúchán faoi 8 ar ceal.
y=x-2
Roinn -16+8x faoi 8.
\sqrt{\left(7-x\right)^{2}+\left(1-\left(x-2\right)\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-\left(x-2\right)\right)^{2}}
Cuir x-2 in ionad y sa chothromóid \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}.
\left(2x^{2}-20x+58\right)^{\frac{1}{2}}=\left(2x^{2}-20x+58\right)^{\frac{1}{2}}
Simpligh. An luach y=x-2 shásaíonn an gcothromóid.
y=x-2
Ag an chothromóid \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} réiteach uathúil.