Réitigh do x.
x=\frac{\sqrt{15}+30}{120}\approx 0.282274861
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\sqrt{3}}{\sqrt{5}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Athscríobh fréamh cearnach na roinnte \sqrt{\frac{3}{5}} mar roinnt na bhfréamhacha cearnacha \frac{\sqrt{3}}{\sqrt{5}}.
\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{5} chun ainmneoir \frac{\sqrt{3}}{\sqrt{5}} a thiontú in uimhir chóimheasta.
\frac{\sqrt{3}\sqrt{5}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{\sqrt{15}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{3} agus \sqrt{5} a iolrú.
\frac{\sqrt{15}\left(x+1\right)}{5}+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Scríobh \frac{\sqrt{15}}{5}\left(x+1\right) mar chodán aonair.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}}{\sqrt{3}}\left(x-1\right)=\frac{1}{15}
Athscríobh fréamh cearnach na roinnte \sqrt{\frac{5}{3}} mar roinnt na bhfréamhacha cearnacha \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(x-1\right)=\frac{1}{15}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{3} chun ainmneoir \frac{\sqrt{5}}{\sqrt{3}} a thiontú in uimhir chóimheasta.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{3}\left(x-1\right)=\frac{1}{15}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}}{3}\left(x-1\right)=\frac{1}{15}
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{5} agus \sqrt{3} a iolrú.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}\left(x-1\right)}{3}=\frac{1}{15}
Scríobh \frac{\sqrt{15}}{3}\left(x-1\right) mar chodán aonair.
\frac{3\sqrt{15}\left(x+1\right)}{15}+\frac{5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 5 agus 3 ná 15. Méadaigh \frac{\sqrt{15}\left(x+1\right)}{5} faoi \frac{3}{3}. Méadaigh \frac{\sqrt{15}\left(x-1\right)}{3} faoi \frac{5}{5}.
\frac{3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
Tá an t-ainmneoir céanna ag \frac{3\sqrt{15}\left(x+1\right)}{15} agus \frac{5\sqrt{15}\left(x-1\right)}{15} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15}}{15}=\frac{1}{15}
Déan iolrúcháin in 3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right).
\frac{8\sqrt{15}x-2\sqrt{15}}{15}=\frac{1}{15}
Cumaisc téarmaí comhchosúla in: 3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15}.
8\sqrt{15}x-2\sqrt{15}=\frac{1}{15}\times 15
Iolraigh an dá thaobh faoi 15.
8\sqrt{15}x-2\sqrt{15}=1
Cealaigh 15 agus 15.
8\sqrt{15}x=1+2\sqrt{15}
Cuir 2\sqrt{15} leis an dá thaobh.
8\sqrt{15}x=2\sqrt{15}+1
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{8\sqrt{15}x}{8\sqrt{15}}=\frac{2\sqrt{15}+1}{8\sqrt{15}}
Roinn an dá thaobh faoi 8\sqrt{15}.
x=\frac{2\sqrt{15}+1}{8\sqrt{15}}
Má roinntear é faoi 8\sqrt{15} cuirtear an iolrúchán faoi 8\sqrt{15} ar ceal.
x=\frac{\sqrt{15}}{120}+\frac{1}{4}
Roinn 1+2\sqrt{15} faoi 8\sqrt{15}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}