Scipeáil chuig an bpríomhábhar
Difreálaigh w.r.t. ϕ
Tick mark Image
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\mathrm{d}}{\mathrm{d}ϕ}(\sin(ϕ))=\left(\lim_{h\to 0}\frac{\sin(ϕ+h)-\sin(ϕ)}{h}\right)
Do fheidhm f\left(x\right), is ionann an díorthach agus teorainn \frac{f\left(x+h\right)-f\left(x\right)}{h} toisc go dtéann h go 0, más ann don teorainn sin.
\lim_{h\to 0}\frac{\sin(h+ϕ)-\sin(ϕ)}{h}
Úsáid an Fhoirmle Shuime don Síneas.
\lim_{h\to 0}\frac{\sin(ϕ)\left(\cos(h)-1\right)+\cos(ϕ)\sin(h)}{h}
Fág \sin(ϕ) as an áireamh.
\left(\lim_{h\to 0}\sin(ϕ)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(ϕ)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Athscríobh an teorainn.
\sin(ϕ)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(ϕ)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Bain leas as an rud é go bhfuil ϕ ina thairiseach agus teorainneacha á ríomh agus h ag dul go 0.
\sin(ϕ)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(ϕ)
Is ionann teorainn \lim_{ϕ\to 0}\frac{\sin(ϕ)}{ϕ} agus 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Chun an teorainn \lim_{h\to 0}\frac{\cos(h)-1}{h} a luacháil, méadaigh an t-uimhreoir agus an t-ainmneoir faoi \cos(h)+1 ar dtús.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Méadaigh \cos(h)+1 faoi \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Baint Úsáid as Aitheantas Píotagarásach.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Athscríobh an teorainn.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Is ionann teorainn \lim_{ϕ\to 0}\frac{\sin(ϕ)}{ϕ} agus 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Bain leas as an rud go bhfuil \frac{\sin(h)}{\cos(h)+1} leanúnach ag 0.
\cos(ϕ)
Ionadaigh an luach 0 isteach sa slonn \sin(ϕ)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(ϕ).