Scipeáil chuig an bpríomhábhar
Difreálaigh w.r.t. β
Tick mark Image
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\mathrm{d}}{\mathrm{d}\beta }(\sin(\beta ))=\left(\lim_{h\to 0}\frac{\sin(\beta +h)-\sin(\beta )}{h}\right)
Do fheidhm f\left(x\right), is ionann an díorthach agus teorainn \frac{f\left(x+h\right)-f\left(x\right)}{h} toisc go dtéann h go 0, más ann don teorainn sin.
\lim_{h\to 0}\frac{\sin(h+\beta )-\sin(\beta )}{h}
Úsáid an Fhoirmle Shuime don Síneas.
\lim_{h\to 0}\frac{\sin(\beta )\left(\cos(h)-1\right)+\cos(\beta )\sin(h)}{h}
Fág \sin(\beta ) as an áireamh.
\left(\lim_{h\to 0}\sin(\beta )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\beta )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Athscríobh an teorainn.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Bain leas as an rud é go bhfuil \beta ina thairiseach agus teorainneacha á ríomh agus h ag dul go 0.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )
Is ionann teorainn \lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } agus 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Chun an teorainn \lim_{h\to 0}\frac{\cos(h)-1}{h} a luacháil, méadaigh an t-uimhreoir agus an t-ainmneoir faoi \cos(h)+1 ar dtús.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Méadaigh \cos(h)+1 faoi \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Baint Úsáid as Aitheantas Píotagarásach.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Athscríobh an teorainn.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Is ionann teorainn \lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } agus 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Bain leas as an rud go bhfuil \frac{\sin(h)}{\cos(h)+1} leanúnach ag 0.
\cos(\beta )
Ionadaigh an luach 0 isteach sa slonn \sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta ).