Difreálaigh w.r.t. φ
\cos(\phi )
Luacháil
\sin(\phi )
Tráth na gCeist
Trigonometry
5 fadhbanna cosúil le:
\sin \varphi =
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\mathrm{d}}{\mathrm{d}\phi }(\sin(\phi ))=\left(\lim_{h\to 0}\frac{\sin(\phi +h)-\sin(\phi )}{h}\right)
Do fheidhm f\left(x\right), is ionann an díorthach agus teorainn \frac{f\left(x+h\right)-f\left(x\right)}{h} toisc go dtéann h go 0, más ann don teorainn sin.
\lim_{h\to 0}\frac{\sin(h+\phi )-\sin(\phi )}{h}
Úsáid an Fhoirmle Shuime don Síneas.
\lim_{h\to 0}\frac{\sin(\phi )\left(\cos(h)-1\right)+\cos(\phi )\sin(h)}{h}
Fág \sin(\phi ) as an áireamh.
\left(\lim_{h\to 0}\sin(\phi )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\phi )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Athscríobh an teorainn.
\sin(\phi )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\phi )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Bain leas as an rud é go bhfuil \phi ina thairiseach agus teorainneacha á ríomh agus h ag dul go 0.
\sin(\phi )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\phi )
Is ionann teorainn \lim_{\phi \to 0}\frac{\sin(\phi )}{\phi } agus 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Chun an teorainn \lim_{h\to 0}\frac{\cos(h)-1}{h} a luacháil, méadaigh an t-uimhreoir agus an t-ainmneoir faoi \cos(h)+1 ar dtús.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Méadaigh \cos(h)+1 faoi \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Baint Úsáid as Aitheantas Píotagarásach.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Athscríobh an teorainn.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Is ionann teorainn \lim_{\phi \to 0}\frac{\sin(\phi )}{\phi } agus 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Bain leas as an rud go bhfuil \frac{\sin(h)}{\cos(h)+1} leanúnach ag 0.
\cos(\phi )
Ionadaigh an luach 0 isteach sa slonn \sin(\phi )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\phi ).
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}