Réitigh do x. (complex solution)
x=\frac{\sqrt{-\frac{707963\pi }{1250000}+9}-3}{2\pi }\approx -0.049793999
x=-\frac{\sqrt{-\frac{707963\pi }{1250000}+9}+3}{2\pi }\approx -0.905135659
Réitigh do x.
x=\frac{\sqrt{5\left(11250000-707963\pi \right)}-7500}{5000\pi }\approx -0.049793999
x=-\frac{\sqrt{5\left(11250000-707963\pi \right)}+7500}{5000\pi }\approx -0.905135659
Graf
Tráth na gCeist
Quadratic Equation
\pi { x }^{ 2 } +3x+0.1415926=0
Roinn
Cóipeáladh go dtí an ghearrthaisce
\pi x^{2}+3x+0.1415926=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir \pi in ionad a, 3 in ionad b, agus 0.1415926 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
Cearnóg 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
Méadaigh -4 faoi \pi .
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
Méadaigh -4\pi faoi 0.1415926.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
Suimigh 9 le -\frac{707963\pi }{1250000}?
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
Tóg fréamh chearnach 9-\frac{707963\pi }{1250000}.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Réitigh an chothromóid x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } nuair is ionann ± agus plus. Suimigh -3 le \frac{\sqrt{56250000-3539815\pi }}{2500}?
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
Roinn -3+\frac{\sqrt{56250000-3539815\pi }}{2500} faoi 2\pi .
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Réitigh an chothromóid x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } nuair is ionann ± agus míneas. Dealaigh \frac{\sqrt{56250000-3539815\pi }}{2500} ó -3.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Roinn -3-\frac{\sqrt{56250000-3539815\pi }}{2500} faoi 2\pi .
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Tá an chothromóid réitithe anois.
\pi x^{2}+3x+0.1415926=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
Bain 0.1415926 ón dá thaobh den chothromóid.
\pi x^{2}+3x=-0.1415926
Má dhealaítear 0.1415926 uaidh féin faightear 0.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
Roinn an dá thaobh faoi \pi .
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
Má roinntear é faoi \pi cuirtear an iolrúchán faoi \pi ar ceal.
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
Roinn -0.1415926 faoi \pi .
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
Roinn \frac{3}{\pi }, comhéifeacht an téarma x, faoi 2 chun \frac{3}{2\pi } a fháil. Ansin suimigh uimhir chearnach \frac{3}{2\pi } leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
Cearnóg \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Suimigh -\frac{707963}{5000000\pi } le \frac{9}{4\pi ^{2}}?
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Fachtóirigh x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
Simpligh.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Bain \frac{3}{2\pi } ón dá thaobh den chothromóid.
\pi x^{2}+3x+0.1415926=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir \pi in ionad a, 3 in ionad b, agus 0.1415926 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
Cearnóg 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
Méadaigh -4 faoi \pi .
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
Méadaigh -4\pi faoi 0.1415926.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
Suimigh 9 le -\frac{707963\pi }{1250000}?
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
Tóg fréamh chearnach 9-\frac{707963\pi }{1250000}.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Réitigh an chothromóid x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } nuair is ionann ± agus plus. Suimigh -3 le \frac{\sqrt{56250000-3539815\pi }}{2500}?
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
Roinn -3+\frac{\sqrt{56250000-3539815\pi }}{2500} faoi 2\pi .
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Réitigh an chothromóid x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } nuair is ionann ± agus míneas. Dealaigh \frac{\sqrt{56250000-3539815\pi }}{2500} ó -3.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Roinn -3-\frac{\sqrt{56250000-3539815\pi }}{2500} faoi 2\pi .
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Tá an chothromóid réitithe anois.
\pi x^{2}+3x+0.1415926=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
Bain 0.1415926 ón dá thaobh den chothromóid.
\pi x^{2}+3x=-0.1415926
Má dhealaítear 0.1415926 uaidh féin faightear 0.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
Roinn an dá thaobh faoi \pi .
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
Má roinntear é faoi \pi cuirtear an iolrúchán faoi \pi ar ceal.
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
Roinn -0.1415926 faoi \pi .
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
Roinn \frac{3}{\pi }, comhéifeacht an téarma x, faoi 2 chun \frac{3}{2\pi } a fháil. Ansin suimigh uimhir chearnach \frac{3}{2\pi } leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
Cearnóg \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Suimigh -\frac{707963}{5000000\pi } le \frac{9}{4\pi ^{2}}?
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Fachtóirigh x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
Simpligh.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Bain \frac{3}{2\pi } ón dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}