Scipeáil chuig an bpríomhábhar
Réitigh do x. (complex solution)
Tick mark Image
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\pi x^{2}+3x+0.1415926=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir \pi in ionad a, 3 in ionad b, agus 0.1415926 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
Cearnóg 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
Méadaigh -4 faoi \pi .
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
Méadaigh -4\pi faoi 0.1415926.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
Suimigh 9 le -\frac{707963\pi }{1250000}?
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
Tóg fréamh chearnach 9-\frac{707963\pi }{1250000}.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Réitigh an chothromóid x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } nuair is ionann ± agus plus. Suimigh -3 le \frac{\sqrt{56250000-3539815\pi }}{2500}?
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
Roinn -3+\frac{\sqrt{56250000-3539815\pi }}{2500} faoi 2\pi .
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Réitigh an chothromóid x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } nuair is ionann ± agus míneas. Dealaigh \frac{\sqrt{56250000-3539815\pi }}{2500} ó -3.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Roinn -3-\frac{\sqrt{56250000-3539815\pi }}{2500} faoi 2\pi .
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Tá an chothromóid réitithe anois.
\pi x^{2}+3x+0.1415926=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
Bain 0.1415926 ón dá thaobh den chothromóid.
\pi x^{2}+3x=-0.1415926
Má dhealaítear 0.1415926 uaidh féin faightear 0.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
Roinn an dá thaobh faoi \pi .
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
Má roinntear é faoi \pi cuirtear an iolrúchán faoi \pi ar ceal.
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
Roinn -0.1415926 faoi \pi .
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
Roinn \frac{3}{\pi }, comhéifeacht an téarma x, faoi 2 chun \frac{3}{2\pi } a fháil. Ansin suimigh uimhir chearnach \frac{3}{2\pi } leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
Cearnóg \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Suimigh -\frac{707963}{5000000\pi } le \frac{9}{4\pi ^{2}}?
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Fachtóirigh x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
Simpligh.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Bain \frac{3}{2\pi } ón dá thaobh den chothromóid.
\pi x^{2}+3x+0.1415926=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir \pi in ionad a, 3 in ionad b, agus 0.1415926 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
Cearnóg 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
Méadaigh -4 faoi \pi .
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
Méadaigh -4\pi faoi 0.1415926.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
Suimigh 9 le -\frac{707963\pi }{1250000}?
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
Tóg fréamh chearnach 9-\frac{707963\pi }{1250000}.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Réitigh an chothromóid x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } nuair is ionann ± agus plus. Suimigh -3 le \frac{\sqrt{56250000-3539815\pi }}{2500}?
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
Roinn -3+\frac{\sqrt{56250000-3539815\pi }}{2500} faoi 2\pi .
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Réitigh an chothromóid x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } nuair is ionann ± agus míneas. Dealaigh \frac{\sqrt{56250000-3539815\pi }}{2500} ó -3.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Roinn -3-\frac{\sqrt{56250000-3539815\pi }}{2500} faoi 2\pi .
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Tá an chothromóid réitithe anois.
\pi x^{2}+3x+0.1415926=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
Bain 0.1415926 ón dá thaobh den chothromóid.
\pi x^{2}+3x=-0.1415926
Má dhealaítear 0.1415926 uaidh féin faightear 0.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
Roinn an dá thaobh faoi \pi .
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
Má roinntear é faoi \pi cuirtear an iolrúchán faoi \pi ar ceal.
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
Roinn -0.1415926 faoi \pi .
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
Roinn \frac{3}{\pi }, comhéifeacht an téarma x, faoi 2 chun \frac{3}{2\pi } a fháil. Ansin suimigh uimhir chearnach \frac{3}{2\pi } leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
Cearnóg \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Suimigh -\frac{707963}{5000000\pi } le \frac{9}{4\pi ^{2}}?
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Fachtóirigh x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
Simpligh.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Bain \frac{3}{2\pi } ón dá thaobh den chothromóid.