Scipeáil chuig an bpríomhábhar
Réitigh do I. (complex solution)
Tick mark Image
Réitigh do I.
Tick mark Image
Réitigh do R. (complex solution)
Tick mark Image
Réitigh do R.
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Méadaigh an dá thaobh den chothromóid faoi \left(r+1\right)^{2}.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Méadaigh R agus R chun R^{2} a fháil.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(r+1\right)^{2} a leathnú.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Úsáid an t-airí dáileach chun IR^{2} a mhéadú faoi r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(r+1\right)^{2} a leathnú.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Úsáid an t-airí dáileach chun r^{2}+2r+1 a mhéadú faoi -18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Dealaigh 18000 ó 22000 chun 4000 a fháil.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Comhcheangail na téarmaí ar fad ina bhfuil I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Roinn an dá thaobh faoi R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Má roinntear é faoi R^{2}r^{2}+2rR^{2}+R^{2} cuirtear an iolrúchán faoi R^{2}r^{2}+2rR^{2}+R^{2} ar ceal.
I=\frac{2000\left(2-18r-9r^{2}\right)}{R^{2}\left(r+1\right)^{2}}
Roinn 4000-36000r-18000r^{2} faoi R^{2}r^{2}+2rR^{2}+R^{2}.
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Méadaigh an dá thaobh den chothromóid faoi \left(r+1\right)^{2}.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Méadaigh R agus R chun R^{2} a fháil.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(r+1\right)^{2} a leathnú.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Úsáid an t-airí dáileach chun IR^{2} a mhéadú faoi r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(r+1\right)^{2} a leathnú.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Úsáid an t-airí dáileach chun r^{2}+2r+1 a mhéadú faoi -18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Dealaigh 18000 ó 22000 chun 4000 a fháil.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Comhcheangail na téarmaí ar fad ina bhfuil I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Roinn an dá thaobh faoi R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Má roinntear é faoi R^{2}r^{2}+2rR^{2}+R^{2} cuirtear an iolrúchán faoi R^{2}r^{2}+2rR^{2}+R^{2} ar ceal.
I=\frac{2000\left(2-18r-9r^{2}\right)}{\left(R\left(r+1\right)\right)^{2}}
Roinn 4000-18000r^{2}-36000r faoi R^{2}r^{2}+2rR^{2}+R^{2}.