Scipeáil chuig an bpríomhábhar
Réitigh do l.
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\left(2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)\right)l=2
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)\right)l}{2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)}=\frac{2}{2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)}
Roinn an dá thaobh faoi 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}).
l=\frac{2}{2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)}
Má roinntear é faoi 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}) cuirtear an iolrúchán faoi 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}) ar ceal.
l=\frac{1}{Re(\frac{1}{n+1})Im(n)+Im(\frac{1}{n+1})Re(n)}
Roinn 2 faoi 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}).