Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

3x+5y=1,x+y=1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x+5y=1
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=-5y+1
Bain 5y ón dá thaobh den chothromóid.
x=\frac{1}{3}\left(-5y+1\right)
Roinn an dá thaobh faoi 3.
x=-\frac{5}{3}y+\frac{1}{3}
Méadaigh \frac{1}{3} faoi -5y+1.
-\frac{5}{3}y+\frac{1}{3}+y=1
Cuir x in aonad \frac{-5y+1}{3} sa chothromóid eile, x+y=1.
-\frac{2}{3}y+\frac{1}{3}=1
Suimigh -\frac{5y}{3} le y?
-\frac{2}{3}y=\frac{2}{3}
Bain \frac{1}{3} ón dá thaobh den chothromóid.
y=-1
Roinn an dá thaobh den chothromóid faoi -\frac{2}{3}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=-\frac{5}{3}\left(-1\right)+\frac{1}{3}
Cuir y in aonad -1 in x=-\frac{5}{3}y+\frac{1}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{5+1}{3}
Méadaigh -\frac{5}{3} faoi -1.
x=2
Suimigh \frac{1}{3} le \frac{5}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=2,y=-1
Tá an córas réitithe anois.
3x+5y=1,x+y=1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}3&5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&5\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-5}&-\frac{5}{3-5}\\-\frac{1}{3-5}&\frac{3}{3-5}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{5}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{-1+5}{2}\\\frac{1-3}{2}\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Déan an uimhríocht.
x=2,y=-1
Asbhain na heilimintí maitríse x agus y.
3x+5y=1,x+y=1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3x+5y=1,3x+3y=3
Chun 3x agus x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 1 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
3x-3x+5y-3y=1-3
Dealaigh 3x+3y=3 ó 3x+5y=1 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
5y-3y=1-3
Suimigh 3x le -3x? Cuirtear na téarmaí 3x agus -3x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
2y=1-3
Suimigh 5y le -3y?
2y=-2
Suimigh 1 le -3?
y=-1
Roinn an dá thaobh faoi 2.
x-1=1
Cuir y in aonad -1 in x+y=1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=2
Cuir 1 leis an dá thaobh den chothromóid.
x=2,y=-1
Tá an córas réitithe anois.