Scipeáil chuig an bpríomhábhar
Réitigh do y,x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

y-x=1
Cuir an chéad cothromóid san áireamh. Bain x ón dá thaobh.
y-x=1,-3y+2x=-3
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
y-x=1
Roghnaigh ceann de na cothromóidí agus réitigh é do y trí y ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
y=x+1
Cuir x leis an dá thaobh den chothromóid.
-3\left(x+1\right)+2x=-3
Cuir y in aonad x+1 sa chothromóid eile, -3y+2x=-3.
-3x-3+2x=-3
Méadaigh -3 faoi x+1.
-x-3=-3
Suimigh -3x le 2x?
-x=0
Cuir 3 leis an dá thaobh den chothromóid.
x=0
Roinn an dá thaobh faoi -1.
y=1
Cuir x in aonad 0 in y=x+1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
y=1,x=0
Tá an córas réitithe anois.
y-x=1
Cuir an chéad cothromóid san áireamh. Bain x ón dá thaobh.
y-x=1,-3y+2x=-3
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&-1\\-3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-\left(-3\right)\right)}&-\frac{-1}{2-\left(-\left(-3\right)\right)}\\-\frac{-3}{2-\left(-\left(-3\right)\right)}&\frac{1}{2-\left(-\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}1\\-3\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2&-1\\-3&-1\end{matrix}\right)\left(\begin{matrix}1\\-3\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2-\left(-3\right)\\-3-\left(-3\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Déan an uimhríocht.
y=1,x=0
Asbhain na heilimintí maitríse y agus x.
y-x=1
Cuir an chéad cothromóid san áireamh. Bain x ón dá thaobh.
y-x=1,-3y+2x=-3
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
-3y-3\left(-1\right)x=-3,-3y+2x=-3
Chun y agus -3y a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi -3 agus gach téarma ar gach taobh den dara cothromóid faoi 1.
-3y+3x=-3,-3y+2x=-3
Simpligh.
-3y+3y+3x-2x=-3+3
Dealaigh -3y+2x=-3 ó -3y+3x=-3 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
3x-2x=-3+3
Suimigh -3y le 3y? Cuirtear na téarmaí -3y agus 3y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
x=-3+3
Suimigh 3x le -2x?
x=0
Suimigh -3 le 3?
-3y=-3
Cuir x in aonad 0 in -3y+2x=-3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
y=1
Roinn an dá thaobh faoi -3.
y=1,x=0
Tá an córas réitithe anois.