Scipeáil chuig an bpríomhábhar
Réitigh do y,x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

y-4x=1
Cuir an chéad cothromóid san áireamh. Bain 4x ón dá thaobh.
y-5x=0
Cuir an dara cothromóid san áireamh. Bain 5x ón dá thaobh.
y-4x=1,y-5x=0
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
y-4x=1
Roghnaigh ceann de na cothromóidí agus réitigh é do y trí y ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
y=4x+1
Cuir 4x leis an dá thaobh den chothromóid.
4x+1-5x=0
Cuir y in aonad 4x+1 sa chothromóid eile, y-5x=0.
-x+1=0
Suimigh 4x le -5x?
-x=-1
Bain 1 ón dá thaobh den chothromóid.
x=1
Roinn an dá thaobh faoi -1.
y=4+1
Cuir x in aonad 1 in y=4x+1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
y=5
Suimigh 1 le 4?
y=5,x=1
Tá an córas réitithe anois.
y-4x=1
Cuir an chéad cothromóid san áireamh. Bain 4x ón dá thaobh.
y-5x=0
Cuir an dara cothromóid san áireamh. Bain 5x ón dá thaobh.
y-4x=1,y-5x=0
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right))\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&-4\\1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-4\right)}&-\frac{-4}{-5-\left(-4\right)}\\-\frac{1}{-5-\left(-4\right)}&\frac{1}{-5-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5&-4\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
Méadaigh na maitrísí.
y=5,x=1
Asbhain na heilimintí maitríse y agus x.
y-4x=1
Cuir an chéad cothromóid san áireamh. Bain 4x ón dá thaobh.
y-5x=0
Cuir an dara cothromóid san áireamh. Bain 5x ón dá thaobh.
y-4x=1,y-5x=0
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
y-y-4x+5x=1
Dealaigh y-5x=0 ó y-4x=1 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-4x+5x=1
Suimigh y le -y? Cuirtear na téarmaí y agus -y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
x=1
Suimigh -4x le 5x?
y-5=0
Cuir x in aonad 1 in y-5x=0. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
y=5
Cuir 5 leis an dá thaobh den chothromóid.
y=5,x=1
Tá an córas réitithe anois.