Scipeáil chuig an bpríomhábhar
Réitigh do y,x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

y+x=3
Cuir an chéad cothromóid san áireamh. Cuir x leis an dá thaobh.
y-x=-1
Cuir an dara cothromóid san áireamh. Bain x ón dá thaobh.
y+x=3,y-x=-1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
y+x=3
Roghnaigh ceann de na cothromóidí agus réitigh é do y trí y ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
y=-x+3
Bain x ón dá thaobh den chothromóid.
-x+3-x=-1
Cuir y in aonad -x+3 sa chothromóid eile, y-x=-1.
-2x+3=-1
Suimigh -x le -x?
-2x=-4
Bain 3 ón dá thaobh den chothromóid.
x=2
Roinn an dá thaobh faoi -2.
y=-2+3
Cuir x in aonad 2 in y=-x+3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
y=1
Suimigh 3 le -2?
y=1,x=2
Tá an córas réitithe anois.
y+x=3
Cuir an chéad cothromóid san áireamh. Cuir x leis an dá thaobh.
y-x=-1
Cuir an dara cothromóid san áireamh. Bain x ón dá thaobh.
y+x=3,y-x=-1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\left(-1\right)\\\frac{1}{2}\times 3-\frac{1}{2}\left(-1\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Déan an uimhríocht.
y=1,x=2
Asbhain na heilimintí maitríse y agus x.
y+x=3
Cuir an chéad cothromóid san áireamh. Cuir x leis an dá thaobh.
y-x=-1
Cuir an dara cothromóid san áireamh. Bain x ón dá thaobh.
y+x=3,y-x=-1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
y-y+x+x=3+1
Dealaigh y-x=-1 ó y+x=3 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
x+x=3+1
Suimigh y le -y? Cuirtear na téarmaí y agus -y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
2x=3+1
Suimigh x le x?
2x=4
Suimigh 3 le 1?
x=2
Roinn an dá thaobh faoi 2.
y-2=-1
Cuir x in aonad 2 in y-x=-1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
y=1
Cuir 2 leis an dá thaobh den chothromóid.
y=1,x=2
Tá an córas réitithe anois.