Réitigh do x,y.
x = \frac{104}{3} = 34\frac{2}{3} \approx 34.666666667
y = \frac{28}{3} = 9\frac{1}{3} \approx 9.333333333
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left. \begin{array} { l } { x - 3.5 y = 2 } \\ { x - 2 y = 16 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
x-3.5y=2,x-2y=16
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x-3.5y=2
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=3.5y+2
Cuir \frac{7y}{2} leis an dá thaobh den chothromóid.
3.5y+2-2y=16
Cuir x in aonad \frac{7y}{2}+2 sa chothromóid eile, x-2y=16.
1.5y+2=16
Suimigh \frac{7y}{2} le -2y?
1.5y=14
Bain 2 ón dá thaobh den chothromóid.
y=\frac{28}{3}
Roinn an dá thaobh den chothromóid faoi 1.5, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=3.5\times \frac{28}{3}+2
Cuir y in aonad \frac{28}{3} in x=3.5y+2. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{98}{3}+2
Méadaigh 3.5 faoi \frac{28}{3} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=\frac{104}{3}
Suimigh 2 le \frac{98}{3}?
x=\frac{104}{3},y=\frac{28}{3}
Tá an córas réitithe anois.
x-3.5y=2,x-2y=16
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\16\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\16\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\16\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\16\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-3.5\right)}&-\frac{-3.5}{-2-\left(-3.5\right)}\\-\frac{1}{-2-\left(-3.5\right)}&\frac{1}{-2-\left(-3.5\right)}\end{matrix}\right)\left(\begin{matrix}2\\16\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}&\frac{7}{3}\\-\frac{2}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}2\\16\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}\times 2+\frac{7}{3}\times 16\\-\frac{2}{3}\times 2+\frac{2}{3}\times 16\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{104}{3}\\\frac{28}{3}\end{matrix}\right)
Déan an uimhríocht.
x=\frac{104}{3},y=\frac{28}{3}
Asbhain na heilimintí maitríse x agus y.
x-3.5y=2,x-2y=16
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
x-x-3.5y+2y=2-16
Dealaigh x-2y=16 ó x-3.5y=2 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-3.5y+2y=2-16
Suimigh x le -x? Cuirtear na téarmaí x agus -x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-1.5y=2-16
Suimigh -\frac{7y}{2} le 2y?
-1.5y=-14
Suimigh 2 le -16?
y=\frac{28}{3}
Roinn an dá thaobh den chothromóid faoi -1.5, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x-2\times \frac{28}{3}=16
Cuir y in aonad \frac{28}{3} in x-2y=16. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x-\frac{56}{3}=16
Méadaigh -2 faoi \frac{28}{3}.
x=\frac{104}{3}
Cuir \frac{56}{3} leis an dá thaobh den chothromóid.
x=\frac{104}{3},y=\frac{28}{3}
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}