Réitigh do x,y. (complex solution)
x=\frac{\sqrt{119}i}{35}+\frac{12}{5}\approx 2.4+0.311677489i\text{, }y=-\frac{3\sqrt{119}i}{35}-\frac{1}{5}\approx -0.2-0.935032467i
x=-\frac{\sqrt{119}i}{35}+\frac{12}{5}\approx 2.4-0.311677489i\text{, }y=\frac{3\sqrt{119}i}{35}-\frac{1}{5}\approx -0.2+0.935032467i
Graf
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
\left. \begin{array} { l } { x ^ { 2 } - 4 y ^ { 2 } = 9 } \\ { y = 7 - 3 x } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
y+3x=7
Cuir an dara cothromóid san áireamh. Cuir 3x leis an dá thaobh.
y=-3x+7
Bain 3x ón dá thaobh den chothromóid.
x^{2}-4\left(-3x+7\right)^{2}=9
Cuir y in aonad -3x+7 sa chothromóid eile, x^{2}-4y^{2}=9.
x^{2}-4\left(9x^{2}-42x+49\right)=9
Cearnóg -3x+7.
x^{2}-36x^{2}+168x-196=9
Méadaigh -4 faoi 9x^{2}-42x+49.
-35x^{2}+168x-196=9
Suimigh x^{2} le -36x^{2}?
-35x^{2}+168x-205=0
Bain 9 ón dá thaobh den chothromóid.
x=\frac{-168±\sqrt{168^{2}-4\left(-35\right)\left(-205\right)}}{2\left(-35\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1-4\left(-3\right)^{2} in ionad a, -4\times 7\left(-3\right)\times 2 in ionad b, agus -205 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-168±\sqrt{28224-4\left(-35\right)\left(-205\right)}}{2\left(-35\right)}
Cearnóg -4\times 7\left(-3\right)\times 2.
x=\frac{-168±\sqrt{28224+140\left(-205\right)}}{2\left(-35\right)}
Méadaigh -4 faoi 1-4\left(-3\right)^{2}.
x=\frac{-168±\sqrt{28224-28700}}{2\left(-35\right)}
Méadaigh 140 faoi -205.
x=\frac{-168±\sqrt{-476}}{2\left(-35\right)}
Suimigh 28224 le -28700?
x=\frac{-168±2\sqrt{119}i}{2\left(-35\right)}
Tóg fréamh chearnach -476.
x=\frac{-168±2\sqrt{119}i}{-70}
Méadaigh 2 faoi 1-4\left(-3\right)^{2}.
x=\frac{-168+2\sqrt{119}i}{-70}
Réitigh an chothromóid x=\frac{-168±2\sqrt{119}i}{-70} nuair is ionann ± agus plus. Suimigh -168 le 2i\sqrt{119}?
x=-\frac{\sqrt{119}i}{35}+\frac{12}{5}
Roinn -168+2i\sqrt{119} faoi -70.
x=\frac{-2\sqrt{119}i-168}{-70}
Réitigh an chothromóid x=\frac{-168±2\sqrt{119}i}{-70} nuair is ionann ± agus míneas. Dealaigh 2i\sqrt{119} ó -168.
x=\frac{\sqrt{119}i}{35}+\frac{12}{5}
Roinn -168-2i\sqrt{119} faoi -70.
y=-3\left(-\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7
Tá dhá réiteach ann do x: \frac{12}{5}-\frac{i\sqrt{119}}{35} agus \frac{12}{5}+\frac{i\sqrt{119}}{35}. Cuir x in aonad \frac{12}{5}-\frac{i\sqrt{119}}{35} sa chothromóid eile y=-3x+7 chun an réiteach comhfhreagrach do y a shásaíonn an dá chothromóid a fháil.
y=-3\left(\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7
Ansin cuir x in aonad \frac{12}{5}+\frac{i\sqrt{119}}{35} sa chothromóid eile y=-3x+7 agus faigh réiteach chun an réiteach comhfhreagrach do y a shásaíonn an dá chothromóid a fháil.
y=-3\left(-\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7,x=-\frac{\sqrt{119}i}{35}+\frac{12}{5}\text{ or }y=-3\left(\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7,x=\frac{\sqrt{119}i}{35}+\frac{12}{5}
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}