Scipeáil chuig an bpríomhábhar
Réitigh do x,y. (complex solution)
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x+y-5=0
Réitigh x+y-5=0 do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x+y=5
Cuir 5 leis an dá thaobh den chothromóid.
x=-y+5
Bain y ón dá thaobh den chothromóid.
y^{2}+\left(-y+5\right)^{2}=1
Cuir x in aonad -y+5 sa chothromóid eile, y^{2}+x^{2}=1.
y^{2}+y^{2}-10y+25=1
Cearnóg -y+5.
2y^{2}-10y+25=1
Suimigh y^{2} le y^{2}?
2y^{2}-10y+24=0
Bain 1 ón dá thaobh den chothromóid.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 24}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1+1\left(-1\right)^{2} in ionad a, 1\times 5\left(-1\right)\times 2 in ionad b, agus 24 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 24}}{2\times 2}
Cearnóg 1\times 5\left(-1\right)\times 2.
y=\frac{-\left(-10\right)±\sqrt{100-8\times 24}}{2\times 2}
Méadaigh -4 faoi 1+1\left(-1\right)^{2}.
y=\frac{-\left(-10\right)±\sqrt{100-192}}{2\times 2}
Méadaigh -8 faoi 24.
y=\frac{-\left(-10\right)±\sqrt{-92}}{2\times 2}
Suimigh 100 le -192?
y=\frac{-\left(-10\right)±2\sqrt{23}i}{2\times 2}
Tóg fréamh chearnach -92.
y=\frac{10±2\sqrt{23}i}{2\times 2}
Tá 10 urchomhairleach le 1\times 5\left(-1\right)\times 2.
y=\frac{10±2\sqrt{23}i}{4}
Méadaigh 2 faoi 1+1\left(-1\right)^{2}.
y=\frac{10+2\sqrt{23}i}{4}
Réitigh an chothromóid y=\frac{10±2\sqrt{23}i}{4} nuair is ionann ± agus plus. Suimigh 10 le 2i\sqrt{23}?
y=\frac{5+\sqrt{23}i}{2}
Roinn 10+2i\sqrt{23} faoi 4.
y=\frac{-2\sqrt{23}i+10}{4}
Réitigh an chothromóid y=\frac{10±2\sqrt{23}i}{4} nuair is ionann ± agus míneas. Dealaigh 2i\sqrt{23} ó 10.
y=\frac{-\sqrt{23}i+5}{2}
Roinn 10-2i\sqrt{23} faoi 4.
x=-\frac{5+\sqrt{23}i}{2}+5
Tá dhá réiteach ann do y: \frac{5+i\sqrt{23}}{2} agus \frac{5-i\sqrt{23}}{2}. Cuir y in aonad \frac{5+i\sqrt{23}}{2} sa chothromóid eile x=-y+5 chun an réiteach comhfhreagrach do x a shásaíonn an dá chothromóid a fháil.
x=-\frac{-\sqrt{23}i+5}{2}+5
Ansin cuir y in aonad \frac{5-i\sqrt{23}}{2} sa chothromóid eile x=-y+5 agus faigh réiteach chun an réiteach comhfhreagrach do x a shásaíonn an dá chothromóid a fháil.
x=-\frac{5+\sqrt{23}i}{2}+5,y=\frac{5+\sqrt{23}i}{2}\text{ or }x=-\frac{-\sqrt{23}i+5}{2}+5,y=\frac{-\sqrt{23}i+5}{2}
Tá an córas réitithe anois.