Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x+2y=1
Cuir an chéad cothromóid san áireamh. Cuir 2y leis an dá thaobh.
x+y=4
Cuir an dara cothromóid san áireamh. Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x+2y=1,x+y=4
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x+2y=1
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-2y+1
Bain 2y ón dá thaobh den chothromóid.
-2y+1+y=4
Cuir x in aonad -2y+1 sa chothromóid eile, x+y=4.
-y+1=4
Suimigh -2y le y?
-y=3
Bain 1 ón dá thaobh den chothromóid.
y=-3
Roinn an dá thaobh faoi -1.
x=-2\left(-3\right)+1
Cuir y in aonad -3 in x=-2y+1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=6+1
Méadaigh -2 faoi -3.
x=7
Suimigh 1 le 6?
x=7,y=-3
Tá an córas réitithe anois.
x+2y=1
Cuir an chéad cothromóid san áireamh. Cuir 2y leis an dá thaobh.
x+y=4
Cuir an dara cothromóid san áireamh. Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x+2y=1,x+y=4
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{2}{1-2}\\-\frac{1}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1+2\times 4\\1-4\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-3\end{matrix}\right)
Déan an uimhríocht.
x=7,y=-3
Asbhain na heilimintí maitríse x agus y.
x+2y=1
Cuir an chéad cothromóid san áireamh. Cuir 2y leis an dá thaobh.
x+y=4
Cuir an dara cothromóid san áireamh. Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x+2y=1,x+y=4
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
x-x+2y-y=1-4
Dealaigh x+y=4 ó x+2y=1 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
2y-y=1-4
Suimigh x le -x? Cuirtear na téarmaí x agus -x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
y=1-4
Suimigh 2y le -y?
y=-3
Suimigh 1 le -4?
x-3=4
Cuir y in aonad -3 in x+y=4. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=7
Cuir 3 leis an dá thaobh den chothromóid.
x=7,y=-3
Tá an córas réitithe anois.