Réitigh do x,y.
x=7
y=-3
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left. \begin{array} { l } { x = - 2 y + 1 } \\ { 4 = x + y } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
x+2y=1
Cuir an chéad cothromóid san áireamh. Cuir 2y leis an dá thaobh.
x+y=4
Cuir an dara cothromóid san áireamh. Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x+2y=1,x+y=4
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x+2y=1
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-2y+1
Bain 2y ón dá thaobh den chothromóid.
-2y+1+y=4
Cuir x in aonad -2y+1 sa chothromóid eile, x+y=4.
-y+1=4
Suimigh -2y le y?
-y=3
Bain 1 ón dá thaobh den chothromóid.
y=-3
Roinn an dá thaobh faoi -1.
x=-2\left(-3\right)+1
Cuir y in aonad -3 in x=-2y+1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=6+1
Méadaigh -2 faoi -3.
x=7
Suimigh 1 le 6?
x=7,y=-3
Tá an córas réitithe anois.
x+2y=1
Cuir an chéad cothromóid san áireamh. Cuir 2y leis an dá thaobh.
x+y=4
Cuir an dara cothromóid san áireamh. Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x+2y=1,x+y=4
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{2}{1-2}\\-\frac{1}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1+2\times 4\\1-4\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-3\end{matrix}\right)
Déan an uimhríocht.
x=7,y=-3
Asbhain na heilimintí maitríse x agus y.
x+2y=1
Cuir an chéad cothromóid san áireamh. Cuir 2y leis an dá thaobh.
x+y=4
Cuir an dara cothromóid san áireamh. Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x+2y=1,x+y=4
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
x-x+2y-y=1-4
Dealaigh x+y=4 ó x+2y=1 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
2y-y=1-4
Suimigh x le -x? Cuirtear na téarmaí x agus -x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
y=1-4
Suimigh 2y le -y?
y=-3
Suimigh 1 le -4?
x-3=4
Cuir y in aonad -3 in x+y=4. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=7
Cuir 3 leis an dá thaobh den chothromóid.
x=7,y=-3
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}