Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

y-3x=0
Cuir an dara cothromóid san áireamh. Bain 3x ón dá thaobh.
x+y=8,-3x+y=0
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x+y=8
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-y+8
Bain y ón dá thaobh den chothromóid.
-3\left(-y+8\right)+y=0
Cuir x in aonad -y+8 sa chothromóid eile, -3x+y=0.
3y-24+y=0
Méadaigh -3 faoi -y+8.
4y-24=0
Suimigh 3y le y?
4y=24
Cuir 24 leis an dá thaobh den chothromóid.
y=6
Roinn an dá thaobh faoi 4.
x=-6+8
Cuir y in aonad 6 in x=-y+8. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=2
Suimigh 8 le -6?
x=2,y=6
Tá an córas réitithe anois.
y-3x=0
Cuir an dara cothromóid san áireamh. Bain 3x ón dá thaobh.
x+y=8,-3x+y=0
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\0\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&1\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{1}{1-\left(-3\right)}\\-\frac{-3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}8\\0\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}8\\0\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 8\\\frac{3}{4}\times 8\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
Déan an uimhríocht.
x=2,y=6
Asbhain na heilimintí maitríse x agus y.
y-3x=0
Cuir an dara cothromóid san áireamh. Bain 3x ón dá thaobh.
x+y=8,-3x+y=0
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
x+3x+y-y=8
Dealaigh -3x+y=0 ó x+y=8 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
x+3x=8
Suimigh y le -y? Cuirtear na téarmaí y agus -y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
4x=8
Suimigh x le 3x?
x=2
Roinn an dá thaobh faoi 4.
-3\times 2+y=0
Cuir x in aonad 2 in -3x+y=0. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
-6+y=0
Méadaigh -3 faoi 2.
y=6
Cuir 6 leis an dá thaobh den chothromóid.
x=2,y=6
Tá an córas réitithe anois.