Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x+y=69,2x+y=87
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x+y=69
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-y+69
Bain y ón dá thaobh den chothromóid.
2\left(-y+69\right)+y=87
Cuir x in aonad -y+69 sa chothromóid eile, 2x+y=87.
-2y+138+y=87
Méadaigh 2 faoi -y+69.
-y+138=87
Suimigh -2y le y?
-y=-51
Bain 138 ón dá thaobh den chothromóid.
y=51
Roinn an dá thaobh faoi -1.
x=-51+69
Cuir y in aonad 51 in x=-y+69. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=18
Suimigh 69 le -51?
x=18,y=51
Tá an córas réitithe anois.
x+y=69,2x+y=87
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}69\\87\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{1}{1-2}\\-\frac{2}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}69\\87\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}69\\87\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-69+87\\2\times 69-87\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\51\end{matrix}\right)
Déan an uimhríocht.
x=18,y=51
Asbhain na heilimintí maitríse x agus y.
x+y=69,2x+y=87
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
x-2x+y-y=69-87
Dealaigh 2x+y=87 ó x+y=69 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
x-2x=69-87
Suimigh y le -y? Cuirtear na téarmaí y agus -y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-x=69-87
Suimigh x le -2x?
-x=-18
Suimigh 69 le -87?
x=18
Roinn an dá thaobh faoi -1.
2\times 18+y=87
Cuir x in aonad 18 in 2x+y=87. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
36+y=87
Méadaigh 2 faoi 18.
y=51
Bain 36 ón dá thaobh den chothromóid.
x=18,y=51
Tá an córas réitithe anois.