Scipeáil chuig an bpríomhábhar
Réitigh do x,y. (complex solution)
Tick mark Image
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

ax+by=c,a^{2}x+b^{2}y=c
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
ax+by=c
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
ax=\left(-b\right)y+c
Bain by ón dá thaobh den chothromóid.
x=\frac{1}{a}\left(\left(-b\right)y+c\right)
Roinn an dá thaobh faoi a.
x=\left(-\frac{b}{a}\right)y+\frac{c}{a}
Méadaigh \frac{1}{a} faoi -by+c.
a^{2}\left(\left(-\frac{b}{a}\right)y+\frac{c}{a}\right)+b^{2}y=c
Cuir x in aonad \frac{-by+c}{a} sa chothromóid eile, a^{2}x+b^{2}y=c.
\left(-ab\right)y+ac+b^{2}y=c
Méadaigh a^{2} faoi \frac{-by+c}{a}.
b\left(b-a\right)y+ac=c
Suimigh -bay le b^{2}y?
b\left(b-a\right)y=c-ac
Bain ca ón dá thaobh den chothromóid.
y=\frac{c\left(1-a\right)}{b\left(b-a\right)}
Roinn an dá thaobh faoi b\left(b-a\right).
x=\left(-\frac{b}{a}\right)\times \frac{c\left(1-a\right)}{b\left(b-a\right)}+\frac{c}{a}
Cuir y in aonad \frac{c\left(1-a\right)}{b\left(b-a\right)} in x=\left(-\frac{b}{a}\right)y+\frac{c}{a}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-\frac{c\left(1-a\right)}{a\left(b-a\right)}+\frac{c}{a}
Méadaigh -\frac{b}{a} faoi \frac{c\left(1-a\right)}{b\left(b-a\right)}.
x=\frac{c\left(b-1\right)}{a\left(b-a\right)}
Suimigh \frac{c}{a} le -\frac{\left(1-a\right)c}{\left(b-a\right)a}?
x=\frac{c\left(b-1\right)}{a\left(b-a\right)},y=\frac{c\left(1-a\right)}{b\left(b-a\right)}
Tá an córas réitithe anois.
ax+by=c,a^{2}x+b^{2}y=c
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}c\\c\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right))\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right))\left(\begin{matrix}c\\c\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right))\left(\begin{matrix}c\\c\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right))\left(\begin{matrix}c\\c\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b^{2}}{ab^{2}-ba^{2}}&-\frac{b}{ab^{2}-ba^{2}}\\-\frac{a^{2}}{ab^{2}-ba^{2}}&\frac{a}{ab^{2}-ba^{2}}\end{matrix}\right)\left(\begin{matrix}c\\c\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{a\left(b-a\right)}&-\frac{1}{a\left(b-a\right)}\\-\frac{a}{b\left(b-a\right)}&\frac{1}{b\left(b-a\right)}\end{matrix}\right)\left(\begin{matrix}c\\c\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{a\left(b-a\right)}c+\left(-\frac{1}{a\left(b-a\right)}\right)c\\\left(-\frac{a}{b\left(b-a\right)}\right)c+\frac{1}{b\left(b-a\right)}c\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c\left(b-1\right)}{a\left(b-a\right)}\\\frac{c\left(1-a\right)}{b\left(b-a\right)}\end{matrix}\right)
Déan an uimhríocht.
x=\frac{c\left(b-1\right)}{a\left(b-a\right)},y=\frac{c\left(1-a\right)}{b\left(b-a\right)}
Asbhain na heilimintí maitríse x agus y.
ax+by=c,a^{2}x+b^{2}y=c
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
a^{2}ax+a^{2}by=a^{2}c,aa^{2}x+ab^{2}y=ac
Chun ax agus a^{2}x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi a^{2} agus gach téarma ar gach taobh den dara cothromóid faoi a.
a^{3}x+ba^{2}y=ca^{2},a^{3}x+ab^{2}y=ac
Simpligh.
a^{3}x+\left(-a^{3}\right)x+ba^{2}y+\left(-ab^{2}\right)y=ca^{2}-ac
Dealaigh a^{3}x+ab^{2}y=ac ó a^{3}x+ba^{2}y=ca^{2} trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
ba^{2}y+\left(-ab^{2}\right)y=ca^{2}-ac
Suimigh a^{3}x le -a^{3}x? Cuirtear na téarmaí a^{3}x agus -a^{3}x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
ab\left(a-b\right)y=ca^{2}-ac
Suimigh a^{2}by le -ab^{2}y?
ab\left(a-b\right)y=ac\left(a-1\right)
Suimigh a^{2}c le -ac?
y=\frac{c\left(a-1\right)}{b\left(a-b\right)}
Roinn an dá thaobh faoi ab\left(a-b\right).
a^{2}x+b^{2}\times \frac{c\left(a-1\right)}{b\left(a-b\right)}=c
Cuir y in aonad \frac{\left(-1+a\right)c}{b\left(a-b\right)} in a^{2}x+b^{2}y=c. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
a^{2}x+\frac{bc\left(a-1\right)}{a-b}=c
Méadaigh b^{2} faoi \frac{\left(-1+a\right)c}{b\left(a-b\right)}.
a^{2}x=\frac{ac\left(1-b\right)}{a-b}
Bain \frac{b\left(-1+a\right)c}{a-b} ón dá thaobh den chothromóid.
x=\frac{c\left(1-b\right)}{a\left(a-b\right)}
Roinn an dá thaobh faoi a^{2}.
x=\frac{c\left(1-b\right)}{a\left(a-b\right)},y=\frac{c\left(a-1\right)}{b\left(a-b\right)}
Tá an córas réitithe anois.
ax+by=c,a^{2}x+b^{2}y=c
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
ax+by=c
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
ax=\left(-b\right)y+c
Bain by ón dá thaobh den chothromóid.
x=\frac{1}{a}\left(\left(-b\right)y+c\right)
Roinn an dá thaobh faoi a.
x=\left(-\frac{b}{a}\right)y+\frac{c}{a}
Méadaigh \frac{1}{a} faoi -by+c.
a^{2}\left(\left(-\frac{b}{a}\right)y+\frac{c}{a}\right)+b^{2}y=c
Cuir x in aonad \frac{-by+c}{a} sa chothromóid eile, a^{2}x+b^{2}y=c.
\left(-ab\right)y+ac+b^{2}y=c
Méadaigh a^{2} faoi \frac{-by+c}{a}.
b\left(b-a\right)y+ac=c
Suimigh -bay le b^{2}y?
b\left(b-a\right)y=c-ac
Bain ca ón dá thaobh den chothromóid.
y=\frac{c\left(1-a\right)}{b\left(b-a\right)}
Roinn an dá thaobh faoi b\left(-a+b\right).
x=\left(-\frac{b}{a}\right)\times \frac{c\left(1-a\right)}{b\left(b-a\right)}+\frac{c}{a}
Cuir y in aonad \frac{c\left(1-a\right)}{b\left(-a+b\right)} in x=\left(-\frac{b}{a}\right)y+\frac{c}{a}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-\frac{c\left(1-a\right)}{a\left(b-a\right)}+\frac{c}{a}
Méadaigh -\frac{b}{a} faoi \frac{c\left(1-a\right)}{b\left(-a+b\right)}.
x=\frac{c\left(b-1\right)}{a\left(b-a\right)}
Suimigh \frac{c}{a} le -\frac{\left(1-a\right)c}{\left(-a+b\right)a}?
x=\frac{c\left(b-1\right)}{a\left(b-a\right)},y=\frac{c\left(1-a\right)}{b\left(b-a\right)}
Tá an córas réitithe anois.
ax+by=c,a^{2}x+b^{2}y=c
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}c\\c\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right))\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right))\left(\begin{matrix}c\\c\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right))\left(\begin{matrix}c\\c\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}a&b\\a^{2}&b^{2}\end{matrix}\right))\left(\begin{matrix}c\\c\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b^{2}}{ab^{2}-ba^{2}}&-\frac{b}{ab^{2}-ba^{2}}\\-\frac{a^{2}}{ab^{2}-ba^{2}}&\frac{a}{ab^{2}-ba^{2}}\end{matrix}\right)\left(\begin{matrix}c\\c\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{a\left(b-a\right)}&-\frac{1}{a\left(b-a\right)}\\-\frac{a}{b\left(b-a\right)}&\frac{1}{b\left(b-a\right)}\end{matrix}\right)\left(\begin{matrix}c\\c\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{b}{a\left(b-a\right)}c+\left(-\frac{1}{a\left(b-a\right)}\right)c\\\left(-\frac{a}{b\left(b-a\right)}\right)c+\frac{1}{b\left(b-a\right)}c\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c\left(b-1\right)}{a\left(b-a\right)}\\\frac{c\left(1-a\right)}{b\left(b-a\right)}\end{matrix}\right)
Déan an uimhríocht.
x=\frac{c\left(b-1\right)}{a\left(b-a\right)},y=\frac{c\left(1-a\right)}{b\left(b-a\right)}
Asbhain na heilimintí maitríse x agus y.
ax+by=c,a^{2}x+b^{2}y=c
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
a^{2}ax+a^{2}by=a^{2}c,aa^{2}x+ab^{2}y=ac
Chun ax agus a^{2}x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi a^{2} agus gach téarma ar gach taobh den dara cothromóid faoi a.
a^{3}x+ba^{2}y=ca^{2},a^{3}x+ab^{2}y=ac
Simpligh.
a^{3}x+\left(-a^{3}\right)x+ba^{2}y+\left(-ab^{2}\right)y=ca^{2}-ac
Dealaigh a^{3}x+ab^{2}y=ac ó a^{3}x+ba^{2}y=ca^{2} trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
ba^{2}y+\left(-ab^{2}\right)y=ca^{2}-ac
Suimigh a^{3}x le -a^{3}x? Cuirtear na téarmaí a^{3}x agus -a^{3}x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
ab\left(a-b\right)y=ca^{2}-ac
Suimigh a^{2}by le -ab^{2}y?
ab\left(a-b\right)y=ac\left(a-1\right)
Suimigh a^{2}c le -ac?
y=\frac{c\left(a-1\right)}{b\left(a-b\right)}
Roinn an dá thaobh faoi ab\left(a-b\right).
a^{2}x+b^{2}\times \frac{c\left(a-1\right)}{b\left(a-b\right)}=c
Cuir y in aonad \frac{\left(-1+a\right)c}{b\left(a-b\right)} in a^{2}x+b^{2}y=c. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
a^{2}x+\frac{bc\left(a-1\right)}{a-b}=c
Méadaigh b^{2} faoi \frac{\left(-1+a\right)c}{b\left(a-b\right)}.
a^{2}x=\frac{ac\left(1-b\right)}{a-b}
Bain \frac{b\left(-1+a\right)c}{a-b} ón dá thaobh den chothromóid.
x=\frac{c\left(1-b\right)}{a\left(a-b\right)}
Roinn an dá thaobh faoi a^{2}.
x=\frac{c\left(1-b\right)}{a\left(a-b\right)},y=\frac{c\left(a-1\right)}{b\left(a-b\right)}
Tá an córas réitithe anois.