Scipeáil chuig an bpríomhábhar
Réitigh do a,b.
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a-b=0
Cuir an chéad cothromóid san áireamh. Bain b ón dá thaobh.
a-b=0,a+b=5
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
a-b=0
Roghnaigh ceann de na cothromóidí agus réitigh é do a trí a ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
a=b
Cuir b leis an dá thaobh den chothromóid.
b+b=5
Cuir a in aonad b sa chothromóid eile, a+b=5.
2b=5
Suimigh b le b?
b=\frac{5}{2}
Roinn an dá thaobh faoi 2.
a=\frac{5}{2}
Cuir b in aonad \frac{5}{2} in a=b. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do a.
a=\frac{5}{2},b=\frac{5}{2}
Tá an córas réitithe anois.
a-b=0
Cuir an chéad cothromóid san áireamh. Bain b ón dá thaobh.
a-b=0,a+b=5
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5\\\frac{1}{2}\times 5\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\\frac{5}{2}\end{matrix}\right)
Déan an uimhríocht.
a=\frac{5}{2},b=\frac{5}{2}
Asbhain na heilimintí maitríse a agus b.
a-b=0
Cuir an chéad cothromóid san áireamh. Bain b ón dá thaobh.
a-b=0,a+b=5
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
a-a-b-b=-5
Dealaigh a+b=5 ó a-b=0 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-b-b=-5
Suimigh a le -a? Cuirtear na téarmaí a agus -a ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-2b=-5
Suimigh -b le -b?
b=\frac{5}{2}
Roinn an dá thaobh faoi -2.
a+\frac{5}{2}=5
Cuir b in aonad \frac{5}{2} in a+b=5. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do a.
a=\frac{5}{2}
Bain \frac{5}{2} ón dá thaobh den chothromóid.
a=\frac{5}{2},b=\frac{5}{2}
Tá an córas réitithe anois.